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Dimensionality Reduction Projection Quality

Cristina Morariu, Adrien Bibal, Rene Cutura, Benoı̂t Frénay, Member, IEEE and
Michael Sedlmair, Member, IEEE

Abstract—A plethora of dimensionality reduction techniques have emerged over the past decades, leaving researchers and analysts with
a wide variety of choices for reducing their data, all the more so given some techniques come with additional parametrization (e.g. t-SNE,
UMAP, etc.). Recent studies are showing that people often use dimensionality reduction as a black-box regardless of the specific
properties the method itself preserves. Hence, evaluating and comparing 2D projections is usually qualitatively decided, by setting
projections side-by-side and letting human judgment decide which projection is the best. In this work, we propose a quantitative way of
evaluating projections, that nonetheless places human perception at the center. We run a comparative study, where we ask people to
select ‘good’ and ‘misleading’ views between scatterplots of low-level projections of image datasets, simulating the way people usually
select projections. We use the study data as labels for a set of quality metrics whose purpose is to discover and quantify what exactly
people are looking for when deciding between projections. With this proxy for human judgments, we use it to rank projections on new
datasets, explain why they are relevant, and quantify the degree of subjectivity in projections selected.

Index Terms—Dimensionality Reduction, Machine Learning, Visualization, Quality Metrics
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1 INTRODUCTION

AWide-spread approach for data exploration is the use of
dimensionality reduction (DR) techniques, also known as

projections. DR is a process that projects high-dimensional data
to a lower-dimensional space, such that the resulting projection
retains specific properties from the original data. An application of
DR is in visualization, where users can create scatterplots based on
two retained dimensions as part of their data analysis. DR methods
are used in various domains ranging from biology and medical
research to social sciences, and they are actively researched in both
the machine learning (ML) and visualization (VIS) communities.

An extensive amount of techniques exists to produce such
projections, such as principal component analysis (PCA) [6],
multidimensional scaling (MDS) [22], isometric feature mapping
(Isomap or ISM) [43], t-distributed stochastic neighborhood
embedding (t-SNE) [44] and, more recently, uniform manifold
approximation (UMAP) [30]. These methods can produce widely
different results, all the more so given that some have hyper-
parameters (e.g. the perplexity of t-SNE).

Evaluating the quality of these results is, however, the burden of
users. In a typical process, a user generates a range of projections,
visualizes them in scatterplots, and selects a suitable one from
the line-up. Several attempts have been made to improve our
understanding of what users look for when evaluating projections.
Some studies focus on investigating whether human judgment
is indeed reliable for evaluating projections [27], while others
focus on defining the tasks that users perform when investigating
projections [9]. Previous works also show that people use DR as
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a black-box mechanism without necessarily understanding what
the objective of the specific technique is [26], [27]. To consolidate
the evaluation of projections quantitatively, both the ML and VIS
communities proposed quality metrics that can be used to select
the best projections automatically.

In this paper, we aim at bridging previous research on quality
metrics for dimensionality reduction and scatterplot visualization,
with the work done on understanding human judgments of
projection quality. We evaluate to what extent existing metrics
in the literature can quantify user preferences. To this end,
we gathered collections of images that we used to compute
widely-used DR techniques. In total, 11 image collections were
used, and 25 projections were computed, resulting from different
parametrizations of the DR techniques mentioned above. Based
on this data, we ran a 54 person user study to collect preferences
on these projections. We then investigated in how far these human
preferences can be formally expressed through existing quality
metrics. Our aim is thus not to survey all DR methods, but rather
to investigate whether quality metrics, or a combination thereof,
can capture user preferences.

Our problem can be framed as a supervised learning problem,
where the relationship between a combination of various quality
metrics is used to predict human judgments. To solve this problem,
machine learning models are used to compute how these metrics
should be combined. The aim is to create and provide a model that
can both predict projections users would most likely prefer, as well
as to offer an explanation as to why they prefer them.

There are two main reasons for this choice. First, building a
supervised model will allow us to derive a composite metric based
on user perception. The new metric can then be used to select
projections that would generally be considered interesting. This is
specifically important when many DR techniques are considered,
or for DR techniques that have several non-trivial hyper-parameters
to tune. Second, this approach will enable us to compare which
quality metrics are important for expressing human preferences.
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In summary, our work makes the following contributions:

• the collection and analysis of data from a 54-participant
user study on subjective preferences in DR projections;

• a quantitative analysis that (a) explains what users like when
selecting DR projections, (b) sheds light on the feasibility of
predicting preferences with quality metrics, and (c) allows
us to better understand which ML and VIS metrics are
important for that; to that end, we use three modeling
approaches that allow to combine quality metrics to predict
user preferences of projections on unseen data, as well as
an analysis on which approach performs best;

• DumbleDR, a proof-of-concept web tool that uses the best-
performing model to rank projections for new datasets and
show what metrics drove the ranking of the results.

2 BACKGROUND & RELATED WORK

Our work brings together the two main types of evaluation
in dimensionality reduction (DR): the quantitative evaluation
using visual and DR-specific quality metrics, and the qualitative
evaluation based on human judgments. This section presents the
latest work in these two areas, and explains how our contributions
build on top of this knowledge.

2.1 DR Evaluation using Quality Metrics
Measuring the quality of projections is the work of two communi-
ties, and each brought quality measures that have distinct properties.
These different quality metrics are presented in this section.

2.1.1 Measures from the Machine Learning Community
The machine learning (ML) community has defined several mea-
sures that can be used as objective functions within DR algorithms.
A good example is stress, the well-known objective function of
multidimensional scaling, which measures the preservation of
pairwise distances between the instances in the high-dimensional
(HD) and the low-dimensional (LD) spaces. Beyond that, the ML
community has investigated metrics that seek to define and measure
the quality of the DR process itself. The rationale for this choice is
that metrics that are used in objective functions are constrained in
their definition (e.g. being differentiable), constraints that may not
be necessary if the sole purpose is to measure quality [24].

Examples of such measures are the local continuity meta-
criterion (LCMC) [12], the measure of trustfulness and continuity
(Truthfulness and Continuity) [46] and AUClogRNX [23]. These
measures typically check if the neighborhoods in the HD space
are preserved in the projection. For instance, LCMC computes, for
each point, the average number of neighbors it has in common in
HD and LD for a certain neighborhood size k. Truthfulness, on the
other hand, is defined by roughly summing the rank of all pairwise
distances from a point i in the original HD data to its nearest
neighbors in the LD projection that are not among the k nearest
neighbors of i in the original data. This metric seeks to measure
whether one can trust what can be seen in the visualization. The
measure of continuity is the exact opposite, as it tells how well the
patterns from the original dataset are projected in the visualization.
The Continuity for a particular neighborhood size k is defined by the
rank of all pairwise distances from the point i in the LD projection
to the nearest neighbors of i in the original HD data that are not
among the k nearest neighbors of i in the LD projection. While the
previously mentioned approaches focus on a specific neighborhood

size k, AUClogRNX consider all neighborhood sizes, with a focus
on smaller neighborhoods. In order to do so, AUClogRNX considers,
for each point, the number of neighbors in common in LD and HD
for all neighborhood sizes with a logarithmic importance.

2.1.2 Measures from the Visualization Community
The other community that tackles measuring projection quality
is the visualization (VIS) community. Metrics from the VIS
community generally focus on the quantification of visual patterns
projections/scatterplots. A venerable example of such measures are
the Scagnostics measures [50], [51]), that quantify patterns such as
Sparsity, Skewness, and Outlierness.

Recently, a substantial amount work has focused on measuring
class separability, that is, how well classes are separated in a DR
projection. Distance consistency (DSC), for instance, computes the
number of instances that are closest to the centroid of their own
class rather than another class. Alternatively, SepMe [1] provides an
ensemble of separability metrics that use neighbourhood graphs to
assess how well classes are separated. These metrics are currently
the best performing separability metrics evaluated in literature.

Other popular measures in this category are the average
between-within clusters (ABW) [26], the hypothesis margin
(HM) [20], the neighborhood hit (NH) [35] and the Calinski-
Harabasz index (CAL) [11]. All these metrics measure the
separability between clusters, albeit differently.

Similar to our goals, several recent works [1], [2], [18], [25],
[33] focused their attention on evaluating quality metrics against
human perception, although with different use cases. Sedlmair
and Aupetit [1], [39] examine perception of class separability in
color-coded scatterplots, Pandey et al. [33] assess to what extent
Scagnostics can be used as a proxi for human perception, and
Lehmann et al. [25] evaluate whether Scagnostics can be used
to filter perceptually interesting views for users. None of these
works, however, has focused on recommending DR methods and
explaining this recommendation using quality metrics, as we do.

2.1.3 Accuracy and Interpretability Measures
The main difference between the measures designed in ML and
those in VIS is their objective. ML metrics generally seek to
measure how well the information is preserved when reducing
the dimensions. In contrast, VIS metrics tend to focus on the
presence of patterns in the visualizations that make it possible for
users to grasp their visualizations and get insights about their data.
Following the parallel of Bibal and Frénay [4] with supervised
learning, the ML measures would be “accuracy” measures, while
VIS measures would be “interpretability” measures. And, as
in supervised learning, the two types of measures should be
balanced to obtain results that would satisfy users [3], [4]. Indeed,
accuracy measures are necessary because visualizations with well-
separated clusters are not useful if they are not faithful to the
high-dimensional space. Likewise, interpretability measures are
also necessary as if readable patterns are not provided, nothing
may be taken from the visualization.

2.1.4 Combining the Different Quality Measures
One idea, which is the one followed by this paper, is to combine the
two worlds by mathematically combining the metrics. For instance,
Bibal and Frénay [4] formulated the linear combination of quality
metrics as follows:
combination = (α1 ∗AM1)+ ...+(αi ∗AMi)+ ...+(αm ∗AMm)

+(β1 ∗ IM1)+ ...+(β j ∗ IM j)+ ...+(βu ∗ IMu),
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where AM (resp. IM) means accuracy metric (resp. interpretability
metric). The different α and β , which are learned, represent the
contribution of the metric to which they correspond.

Ensembles of metrics were also discussed in the quantitative
survey of DR methods of Espadoto et al. [17]. The authors
surveyed 44 DR methods and computed the average of several
metrics (truthfulness, continuity, neighborhood hit, normalized
stress, Shepard goodness and local error) on 18 datasets in order
to assess the global performance of individual DR techniques.
We build on this work and go beyond by investigating learning
the combination of measures that predict user choices. Similarly,
Nonato and Aupetit [32], as well as van der Maaten et al. [45],
extensively reviewed DR techniques alongside quality metrics for
DR, albeit without computing quality metrics on projections.

2.1.5 Applications for Quality Metrics
Aside from the works mentioned above, the VIS community
focuses on bridging the gap between quality metrics and human
judgments by designing visual analytics (VA) systems that aid
users in comparing [13] or selecting [14], [21], [29] projections.
The insights derived from our contribution can be used as part of a
VA system that recommends projections.

Lehman et al. [25] also propose using specific quality metrics
to automatically filter out easily rejected projections, as scored by
users. Wang et al. [48] use previously evaluated quality metrics of
subjective class separability to propose a new DR technique, which
is implicitly optimized to model human perception of separability.

2.2 Evaluation Driven by Human Judgments
Despite the existence of quality metrics, the burden in the evaluation
of projections remains mainly on users. This section discusses DR
research that collects and/or uses human judgment to assess quality.

2.2.1 Taxonomies for high-level tasks related to DR
The work by Brehmer et al. [9] aims to define what tasks users
perform when they investigate projections. Following interviews,
the authors introduce a characterization of tasks. These are manifold
tasks, where users are trying to name the synthesized dimensions,
and cluster tasks, where users verify, name, or match clusters with
class names. These tasks have been considered in the selection of
our datasets to ensure our study participants deal with different
settings. Another closely aligned work is the one of Sedlmair et
al. [41], which proposes a cluster analysis taxonomy, one of the
most important analysis tasks in the DR data exploration process.

2.2.2 Assessing user preferences in DR
Lewis and van der Maaten [27] investigate whether human judg-
ments are consistent by running a user study with groups of experts
and novices. The participants are asked to select 2 good projections
and a bad one from a line-up of 9 monochrome scatterplots, each
representing a projection. They offer the users little information
regarding the original dataset and find out different users prefer
different projections, inferring that user preferences are vastly
subjective. However, they also show that the more users have
expertise, the more they are coherent in their judgement. Our study
setup builds up on this one, as both studies focus on the real-life
task of users selecting projections from a line-up. However, our
goal is (i) to deepen the understanding about how users make their
decisions and (ii) to model these for recommending projections.
Our setup is detailed in Section 3.

Bibal and Frénay [3] also ran a user study collecting user
preferences of t-SNE projections of the MNIST dataset. The
objective of the authors was to study how cluster separability
measures and their combination (using a modified Cox model)
could predict user preferences. The study presented in this paper is
larger in scale at all levels: more datasets, more DR techniques (not
only t-SNE), more quality metrics and different ways to frame the
problem and to combine metrics. This enlargement in scope allows
us to perform original analyses and to draw insightful conclusions.

2.2.3 Selecting DR projections
Oftentimes, when new DR methods are introduced, a comparative
study to other techniques is proposed as an evaluation. The
projections get visualized in scatterplots and the reader is invited to
assess the line-up and decide for themselves which is the superior
projection. This can also be the case for the selection of hyper-
parameter values inside a particular DR technique. For instance,
the authors of t-SNE invite users to try various parametrizations
and select the projection they prefer [44].

Wattenberg et al. [49] show that blindly trying hyperparameters
and selecting appealing projections has downfalls, in that it can
mislead users on the faithfulness of the projection. Moreover, user
guidelines given by authors often are technique-specific, in this
particular case, for t-SNE. To overcome such issues, Sedlmair et
al. [40] assess the best visualization methods to use during DR
exploration, and provide guidelines on selecting DR techniques
using visualizations based on data collected in a user study.

Other work [18] designed a user study to assess which
projections can best enhance users’ abilities to detect clusters,
outliers or estimate density. These results were, however, not used
to recommend better projections for specific tasks.

3 USER STUDY & DATA COLLECTION

The main idea behind our approach is to (a) sample different DR
projections from a set of datasets, (b) collect human DR preferences
for them, and (c) calculate different quality metrics to see how
far they can predict human DR preferences. In the following, we
describe these three components in more details:

3.1 Selected Datasets & Projection Methods

In the first step, we need to select suitable datasets that allow
users to provide meaningful quality judgments for different DR
projections thereof. To be able to extract meaningful preferences
of projections from users that go beyond the appealing aspect of
scatterplots, one needs to make sure that users can process the
high-dimensional data they are analyzing as well. From the work
of Lewis et al. [27], we know that assessing preferences by only
supplying minimal information about the original data can result
in highly subjective and inconsistent judgments across participants.
It might not be possible to properly judge whether meaningful
clusters appear or whether a manifold was adequately unrolled [9].

To solve this issue, we decided to use collections of images for
our study. Under this setup, the projections visualized as scatterplots
would not be simply monochrome scatterplots. Instead, each dot
encoding a 2D position was replaced by a thumbnail of the image
getting projected at this location. For example, in the case of
the COIL-100 dataset, a collection of objects photographed from
different angles, the scatterplot contained thumbnails of objects as
shown in Figure 1a. By showing images as thumbnails, an access
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Dataset Name Description Difficulty (as scored by users) % of Disagreement

COIL-100 Images of common objects photographed from different angles (128 x 128) 11%

MNIST Handwritten Digist (28 x 28) 12.5%

Fashion MNIST Images of clothes (28 x 28) 20%

Stanford Faces One bust photographed from different angles, in different light conditions (50 x 50) 19%

Yale Faces 14 people displaying happy, neutral or sad faces (320 x 243) 20%

Flowers Photos of 6 different species of flowers (500 x 500) 20%

Caltech plants Photos/illustrations of 6 different species of plants (320 x 243) 18%

Caltech vehicles Photos/illustrations of 6 different types of vehicles (320 x 243) 22%

Caltech instruments Photos/illustrations of 6 different types of instruments (320 x 243) 21%

Paris Buildings Photos of buildings in Paris (1024 x 768) 14%

Oxford Buildings Photos of attractions in Oxford (1024 x 768) 24%

TABLE 1: This table lists the datasets used in our experiment. The name, description, the proportion of difficulty ratings given
by users (easy - green, medium - amber, hard - red) and the amount of preference disagreements for each dataset are
provided as scored by the users.

to the high-dimensional attributes (the pixels) is given along with
the projected low-dimensional position in the visualization.

We collected a total of 11 image datasets, listed in Table 1.
First, we selected datasets that implicitly suggest different potential
tasks even though no task is explicitly defined in the experiment.
For example, in the case of the MNIST digits dataset, the expected
task was matching class names (the digits) to various clusters
formed. In contrast, for the Stanford face dataset where a bust
is photographed from different angles and at different lighting
conditions, users could prefer a manifold where the lighting goes
from light to dark, or one where the view angle changes smoothly.
Second, we sought to collect datasets of various difficulties, on the
premise that it is much easier to state a preference on projections
from an easy dataset like MNIST, as opposed to a more complex
dataset like the Paris Building dataset consisting of larger and more
messy real-world photos. We used the original image size (in the
column “Description” of Table 1) as a proxy measure of dataset
complexity, and during the study, users were asked to score the
dataset difficulty. For each dataset, its difficulty, aggregated from
user responses during the study, is conveyed in Table 1.

The dimensionality reduction techniques used to generate
the projections are principal component analysis (PCA) [6],
multidimensional scaling (MDS) [22], isometric feature mapping
(Isomap) [43], t-distributed stochastic neighborhood projection (t-
SNE) [44], uniform manifold approximation (UMAP) [30], locally
linear projection (LLE) [37], Spectral Embedding (SE) [31], and
Gaussian random projection (GRP) [5]. For techniques with hyper-
parameters, multiple projections were generated. One hundred
projections were initially generated for each dataset and, then, 25
projections for each dataset were uniformly sampled based on
the metric space to be used in the user experiment. Finally, we
manually down-sampled projections that appeared very similar, e.g.
rotated variants, or duplicates of one another. This process resulted
in 15 to 20 distinct projections per dataset. An example of the
selected projections can be seen in Figure 1. The parameter settings
of Isomap, LLE, t-SNE and UMAP can be found in Figure 2 (right
side). In the next step, we showed these projections to users in an
online experiment as detailed in the following section.

3.2 User Preferences Dataset
This section describes the user experiment that has been set up to
collect user preferences on projections.

3.2.1 Participants
In total, 54 users participated in our study, out of which 4 had
finished a Ph.D., 38 had a master’s degree and the remainder
12 had completed a bachelor’s degree. We reached our user
base by advertising the study within the university network
of the co-authors. Participation was voluntary and unpaid. We
asked participants for their domain expertise in machine learning,
visualization and dimensionality reduction, and the majority of our
user base reported familiarity with all these concepts.

3.2.2 Study Procedure
We conducted a web-based user study that takes place completely
online and on various display sizes. The study began with an
information page explaining the subject of the study, and the
duration it takes (40 to 60 minutes). The participant could only
access the study if their display size was larger than 700 x 500. After
reading the information page, the users were presented a consent
form, a general introduction explaining what dimensionality
reduction is and how the user interface of the study works, and with
a questionnaire to collect demographic and experience data (see
above). The study then proceeded with the trials. Upon finishing,
participants were asked about the overall difficulty of the setup and
any other feedback.

3.2.3 Trial Setup
Our study consisted of multiple trials in which users had to rate
projections. The stimuli in each trial were the projections generated
by applying DR algorithms to the aforementioned datasets.

A total of 8 projections of the same dataset were shown per trial.
The projections were randomly selected from the total projections
available for a particular dataset and were placed on a 2-by-4 grid in
a randomized order. The DR projections were shown as scatterplots
of images on a white background. The views were connected by
brushing and linking, so if a user hovered over one image within
a scatterplot, this became highlighted across all eight plots. Users
could also enlarge and zoom in one particular view.

At the beginning of each trial, participants received 15 points
(represented by hearts in the interface) and were asked to distribute
them across the eight projections. A higher number of points
assigned to a projection means that the participant preferred this
projection more. One projection could receive a maximum of 4
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(a) Image scatterplot view of the interface. This view is
used so that users can see, through thumbnails, how the
images from the dataset have been projected in 2D.

(b) Point scatterplot view of the interface. This simpler view
contains points instead of image thumbnails, with colors
corresponding to class labels.

Fig. 1: Two views of the same trial from the experiment for collecting user preferences. Each view contains 8 projections of
COIL-100 built by different DR techniques. Black hearts correspond to the scores distributed among the projections.

points. A user could also mark a projection as bad, rather than
distributing any points to it. Participants could also sort the grid
of DR projections such that they got rearranged by preference
in descending order. Sorting enabled the participants to focus on
a local comparison of projections with their slightly better and
worse direct neighbors. The sorting mechanism together with the
restricted number of points per trials were designed to force the
users into deciding which projections they liked more and which
not. Our intention was to avoid a situation where a user would
award every projection an equal number of points. A rated and
sorted example of a trial is presented in Figure 1.

Upon completion of one trial, participants were asked to score
the difficulty of the trial and whether they would like to score
another dataset. Each user could complete up to 10 trials, each trial
testing a dataset. The datasets across trials appeared in random
order. Sampling with replacement was used to choose the next trial,
meaning a user was able to see the same dataset twice, but with
a different selection of projections. The setup was implemented
using a serverless architecture in JavaScript1. The data collected
during the setup was hosted in Germany.

3.2.4 Descriptive Results
An important aspect to analyze was the degree of consensus
between users when it came to preferences. Previous work [27]
showed that there was a high degree of subjectivity when it comes to
users recording preferences of DR projections. Furthermore, users’
ability to select good quality projections was called into question. In
our study, however, we report that while there were disagreements
in ratings, the majority converged towards well-defined preferences.
For each pairwise comparison between two projections, the best
case scenario is that all judgments are in agreement, i.e. 0% of
disagreement. The worst case is that opinions are evenly split
when comparing the projections, i.e. half of the judgments are in
disagreement with the other half (50% of disagreement). In our
case, on average, 18.5% of the ratings were in disagreement with
the majority. A breakdown of disagreement in conjunction with the
difficulty of the dataset as scored by the user can be seen in Table 1.
Datasets perceived as harder also incurred a higher percentage
of disagreements. One example is the dataset of building photos

1. The user study is available here: https://kix2mix2.github.io/DumbleDR/
public/index.html

from Oxford. The same applies the other way around, where “easy”
datasets such as MNIST had low percentage of disagreements.

Based on the ratings awarded in each trial by each user, we
calculated a preference matrix by counting how many times a
projection was scored higher than another one. We aggregated
these results to assess whether particular DR techniques were sys-
tematically preferred. In Figure 2, we can see the user preferences
aggregated on a DR technique level. The heatmap encodes how
many times users agreed that one DR technique (mentioned row-
wise) was better than another (column-wise). The bluer the cell the
more people agree that the DR technique in the row was better than
a technique in the column. There are clear winners and losers. For
example, the Gaussian Random Projections (GRP) were universally
disliked alongside bad parametrizations of UMAP (e.g. when only
two neighbours are considered). This may indicate that GRP could
be used as a baseline in further experiments. Interestingly, there
were no universally bad parametrization for t-SNE. UMAP with
good parametrizations appeared to be systematically preferred over
the other projections. A hierarchy can be observed: GRP ≤ PCA
≤ Isomap ≤ t-SNE ≤ UMAP, where DRi ≤ DR j means that the
visualizations generated by DR j were more often preferred to the
visualizations generated by DRi.

3.3 Quality Metrics Dataset

In order to predict user preferences, we gathered metrics from dif-
ferent communities that measure various aspects of visualizations.
The measures quantify both the accuracy and the interpretability
of visualizations as defined in Bibal and Frénay [4]. All metrics
were normalized such that their value is between 0 and 1. The list
of metrics used, as well as whether they measure the correctness
of the HD-to-LD mapping, or the quality of the LD visualization
only, is presented in Table 2.

Among the metrics in Table 2 that have not been presented
in Section 2.1, one can find the silhouette coefficient (SC), the
correlation coefficient (CC), the non-metric stress (NMS), the
curvilinear component analysis (CCA), the nonlinear mapping
stress (NLM) and the neighbor retrieval visualizer (NeRV).

SC [36] is a classic metric in clustering that measures how
clusters are separated from each other, versus how instances inside
a same cluster are grouped together. This metric is similar to ABW,
but diverges in its mathematical definition. CC [19] is a metric

https://kix2mix2.github.io/DumbleDR/public/index.html
https://kix2mix2.github.io/DumbleDR/public/index.html
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Fig. 2: User aggregated preferences of DR technique, overall
(first) and parametrized (second). A score higher than 0.5,
depicted in blue, means that more than 50% of the users
preferred the DR technique specified in the row over the one
specified in the column. Scores lower than 50% are encoded
in red. The DR techniques are sorted by user preference in
ascending order, with the exception of some parametrizations
of UMAP which are universally disliked.

that computes the correlation between the vector of all pairwise
distances in the original dataset and the corresponding vector of
pairwise distances in the visualization. NMS [22], CCA [16] and
NLM [38] are three stress measures that are considered in our
study. Stress measures have in common that they measure how well
pairwise distances in the high-dimensional space are preserved in
the low-dimensional space. Each of the three measures have their
particularities. For instance, NMS [22], as a non-metric measure,
does not compare pairwise distances directly, but their ranking.

Finally, NeRV [47] is a metric based on information retrieval,
in the sense that it translates the concepts of precision and recall to
a measure similar to the Truthfulness and Continuity. Furthermore,
similarly to the two sub-metrics of Truthfulness and Continuity,
precision and recall are then combined by using, for instance,
a simple mean. One particularity of NeRV is that it redefines

Metric Name Type Applied on
Outlying [50], [51] Scagnostics LD
Skewed [50], [51] Scagnostics LD
Clumpy [50], [51] Scagnostics LD
Sparse [50], [51] Scagnostics LD
Striated [50], [51] Scagnostics LD
Convex [50], [51] Scagnostics LD
Skinny [50], [51] Scagnostics LD
Stringy [50], [51] Scagnostics LD

Monotonic [50], [51] Scagnostics LD
ABW [26] Cluster separability LD
CAL [11] Cluster separability LD
DSC [42] Cluster separability LD
HM [20] Cluster separability LD
NH [35] Cluster separability LD
SC [36] Cluster separability LD
CC [19] Correlation btw distances HD to LD

NMS [22] Stress HD to LD
CCA [16] Stress HD to LD
NLM [38] Stress HD to LD

LCMC [12] Small neighborhoods HD to LD
T&C [46] Small neighborhoods HD to LD
NeRV [47] Small neighborhoods HD to LD

AUClogRNX [23] All neighborhoods HD to LD

TABLE 2: List of measures used in our analysis. If the metric
is said to be applied on LD, then it only measures the quality
(or check patterns in) the visualization. These measures are
said to capture how interpretable the visualization is. However,
if it said to be applied from HD to LD, then it measures the
accuracy of the DR process.

the distances in the original dataset and in the visualization as
probabilities, like t-SNE. It also contains a perplexity hyper-
parameter that represents the size of the neighborhood to consider.
In our experiments, NeRV perplexity has been fixed at 5.

In Figure 3, a correlation matrix heatmap of the calculated
measures is presented. The separability metrics are all highly
correlated. For this reason, for all analysis involved we decided
to drop measures correlated at more than 95%. Between pairs of
highly correlated measures, the most popular one in each pair was
kept. In consequence, the metrics dropped from further analysis
were: SepMemv f , SepMemvt , Continuity, NH, and CC. Additionally
we also removed ABW and CAL, as they were low variance
features and carried low information.

4 MODELING USER PREFERENCES

We now present three ways to model our data, with incremental
levels of detail:

• The first model aims to loosely classify “good” and “bad”
projections, as decided by users. In this case, the number
of points awarded is not taken into account, only whether
the projection was crossed out or not.

• The second model aims to linearly learn which projections
are preferred by users, by answering the question “Would
projection A be preferred to projection B?”.

• The third model seeks to provide a ranking of the projec-
tions. With this model, we specifically want to examine
whether a nonlinear combination of the metrics can further
improve the performance.

From all three models, we extract the most important metrics
that help to predict user preferences. Although there are disagree-
ments in the data, no data and no participants were discarded
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Fig. 3: Correlation matrix of the 2 metric categories: inter-
pretability (Scagnostics measures, in blue & separability
measures, in amber) and accuracy measures (in green).

from the training process. Hence, the models were trained on
noisy annotations where the same projection may have conflicting
annotations. With this setup, we were able to take into account the
subjectivity in the data. To conclude this section, we decide which
of the three models should be used as part of our technique and
proof-of-concept tool presented in Section 5.

4.1 Modeling Setup

The evaluation of our models is operated on a leave-one-group-out
basis. This is a cross-validation setup where the data is split into
distinct groups and a model is trained on the collected preferences
related to all groups but one. The remaining group is used as a
test set. The process is repeated for all combinations of groups.
Throughout our modelings, we mainly use the datasets in Table 1 as
our groups. We call this procedure leave-one-dataset-out (LODO).

Given that different datasets are used to generate our projections,
and that they have different degrees of complexity (see Table 1),
it is expected that all our models vary slightly in performance
from dataset to dataset. Furthermore, computing a prediction score
for each group also enables us to build a measure of prediction
uncertainty on unseen data, by calculating the confidence interval
over all test dataset results Rtest .

4.2 Model 1: Classifying Good and Bad Projections

Model 1 is set up to learn the distinction between “good” and “bad”
(i.e., misleading) projections. We classified a projection as good if
a participant scored it with at least one heart, and as bad if it was
crossed out by a participant. Figure 1 shows these two categories
with scatterplots highlighted either in green (good) or in red (bad).

For this setup, the metrics were assigned as features and
people’s preferences were binarized to 1 (good) or 0 (bad). The
data was fed to a random forest and evaluated on a LODO basis
to determine the prediction performance for each dataset. We also
cross-validated hyper-parameters to choose the best setup for each

Fig. 4: Top features used by Model 1. The features are listed
in order of importance. The length of the bar represents the
absolute impact on the model output. Sparsity is the most
important feature, and its impact on the model output means
that on average this feature can change the probability of
being a “good” projection by 0.5.

test fold of LODO. The setup was implemented using the Scikit-
learn library in Python. The random forest with 200 decision trees
of a maximum depth of 10 nodes was our best setup. In total, the
model used 3664 annotated projections to learn. SHAPley values
[28] were used to explain the prediction for any instance xi as
a sum of contributions from its individual feature values. This
interpretation was similar to that of weights in a linear model, but
in a model that can approximate more complex functions.

The area under the receiver operator curve (AUC) metric was
optimized in the LODO setup. This resulted in the predictive
performance of 78.36% with a confidence interval of ± 4.08%. In
terms of feature importance, Scagnostics [50], [51] features such as
Sparsity, Skinny and Outlying are the most important ones. Feature
importance is summarized in Figure 4. For the majority of the tested
projections, low Sparsity and high Skinniness increase the chances
of a projection to be disliked by participants. This makes sense as
projections selected by users as bad tend to be random projections,
where points are scattered in the 2D visualizations, with no apparent
meaning. An example of such a projection can be seen in the last
position on the grid of Figure 1. A similar interpretation exists for
very skinny projections such as the projections in the second and
third to last places on the grid of Figure 1.

4.3 Model 2: Linear Preference Learning

For Model 2, we re-defined the problem as to linear preference
learning. To do that, for each pair (vi,v j) of visualizations in a
dataset, the percentage of time vi is preferred over v j is considered.
For instance, 90% means that 90% of the time, when vi and v j were
presented in the same trial to users, vi received a larger number
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Fig. 5: Top features used by Model 2. Given the Lasso
regularization, this model uses only 5 features compared
to the other 2 models.

of hearts than v j. Because the comparisons are aggregated to get
percentages, the number of instances becomes 2268 for this dataset.

The goal of the linear preference learning model is then to
linearly reconstruct the preferences between visualizations, based
on the percentage of time a particular visualization has been
preferred to another visualization. The advantage of linear models
are their robustness to overfitting, as well as their interpretability.
As for all experiments, the quality metrics are used as explanatory
variables for predicting the preferences.

In order to do such predictions, Bradley-Terry models
(BTm) [8] are used. BTm linearly combines features to derive
probabilities of being preferred:

P(vi > v j) =
ew0+w1∗m1,i+...+w23∗m23,i

ew0+w1∗m1,i+...+w23∗m23,i + ew0+w1∗m1, j+...+w23∗m23, j
,

where w0, w1, ..., w23 are 24 weights to learn (one for each metric
plus the intercept), and mk,i (resp. mk, j) are the kth metric evaluated
on the visualization vi (resp. v j). We trained the BTm with a Lasso
penalty in order to encourage sparsity among the weights. This
enabled the model to obtain the lowest error that it could, while
using the fewest quality metrics. Thus, the approach discarded
metrics that have little to no effect in the prediction of participant
preferences. For developing our BTm model, we modified the
package BradleyTerry2 in R to include the Lasso penalty.

The absolute value of the metric weights that have been found
after learning a sparse BTm on our preference data are presented
in Figure 5. The accuracy of the BTm is 62.3%, with the 95%
confidence interval being [58.39%, 66.22%]. The accuracy is
obtained by counting the number of time the model is right when
it says vi > v j, over the total number of predictions. To obtain
accuracy on data that have not been used for training, the LODO
strategy has been used. The final accuracy is the mean of the
test accuracy scores of the 11 involved datasets. This way, the
reported final accuracy offers some guarantees on the use of the
presented sparse linear model on new datasets. If only the data
where users strongly agree on good and bad visualizations (at least
80% of agreement) is used, the accuracy becomes 65.93% [61.42%,
70.43%]. The λ balancing the importance given to the error and the
Lasso penalty was 0.021 for a BTm learned on the whole dataset.

4.4 Model 3: Nonlinear Ranking of Projections
In our final setup (Model 3), like for Model 2, we output a measure
of how good each projection is. This makes it possible to answer
the question “By how much is projection A better than projection

Fig. 6: Ranked features of Model 3. Three out of the top five
features (DSC, Sparse and Skinniness) are in alignment with
features from Model 2.

B?”. This measure acts as a popularity score and can also be used
to compare if the projections generated for some datasets have a
higher quality than for other datasets.

As opposed to Model 2, we chose for Model 3 a nonlinear
model to exploit more complex relationships among the metrics
and potentially increase our performance. We implemented a
boosted tree ensemble to both rank the projections of each dataset.
Boosted tree ensembles are learning methods that can be used for
classification, regression, and learning-to-rank tasks [10].

Given that boosted trees are state-of-the-art models in su-
pervised learning for tabular data, we expect that exploiting
the nonlinear relationships between our features could lead to
performance improvement. That is, we would like to know whether
a nonlinear combination of our features, unlike the one mentioned
in Equation 2.1.4, can lead to better results.

Model 3 is fed with projection lists that are sorted according
to the hearts awarded by participants. As such, the model learns
to rank the projections from the 3664 instances, but sorted into
458 groups of 8 projections, as they were initially ranked by our
participants. Model 3’s objective is then to create a ranking for a
new, unseen, dataset of projections. This set of projections can be of
any length, not just 8 projections, and the model learns to minimize
the number of incorrect pairwise comparisons, as described by
the LambdaMART algorithm [10]. Following cross-validation of
our hyper-parameters, our model was trained using 15 sequentially
trained decision trees. The learning rate used in the setup was 0.3
and the maximum depth of each decision tree involved was 5. The
setup was implemented using the XGboost library in Python.

The LODO error is calculated the same way as in Model 2.
Overall, the accuracy is 70%, with a confidence interval (CI) of
±4.4%. When the LODO error is calculated only for comparisons
where there was a strong agreement, such as 80% agreement, the
accuracy increases to 78.09%, with a CI of ±6.5%.
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Fig. 7: Overview of the performance of the 3 experiments evaluated for each dataset separately. The first experiment (binary
classification) is the best performing as it is concerned by an easier task.

4.5 Discussion

Performance on Unseen Datasets: Figure 7 displays the break-
down of performance accuracy for each dataset. Unsurprisingly,
the model performs better on datasets which were rated as easier
and with more consensus (see Table 1). Given the LODO errors
from all experiments, we can establish with a CI of about 95% that
our models are able to generalize to new image datasets.

Performance of Features/Metrics: Figures 4, 5, 6 present
the feature importance in our three models. In other words, they
show which of the existing metrics (= features) are important
for modeling human preferences of DR projections. All three
experiments show similar trends in terms of feature importance.
Scagnostics features [50], [51], like Sparsity, Skewed and Skinny,
alongside separability metrics, like DSC, are in all cases among the
top 5 most important features. Features such as Sparse, Skewed,
and Outlying are used to detect bad projections. These features
tend to be high for projections where the positioning of the points
appears random or uniformly distributed. These were universally
disliked by humans, which can be seen in Figure 2, where the
Gaussian random projection (GRP) was the most disliked DR
technique. Previous work from Lehman et al. [25] also identified
a subset of Scagnostics measures, namely stringy and striated, as
measures which can be used to “early reject” projections that are
not understandable for users.

In Model 2, the accuracy metrics NLM and AUClogRNX
have a large impact on the model (see Figure 5). They are not
compensating each other, as removing from the available metrics
one of the two leads to a new model with a reduced performance.
The higher importance of AUClogRNX and the reliability of DSC,
among cluster separability measures, to assess user preferences
are aligned with similar experiments in the literature [3]. Indeed,
all models use separability features, such as DSC, to detect the
presence of semantically relevant clusters. A high DSC measure
is a strong indicator of a liked projection. This is in line with the
quantitative evaluation undertaken by Sedlmair et al. [41], which
highlights class separability as one of the most important tasks
people perform on DR. While Scagnostics measures are used like
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Fig. 8: Overview of the performance of the first experiment
evaluated for each DR technique separately.

the other models, we can also see the Scagnostic measure Clumpy,
which identifies clusters regardless of their semantic composition.
This points to the fact that people prefer looking more specifically
for clusters that make sense semantically.

All three models show that metrics from both, the VIS and
the ML communities are important. In addition to Scagnostics and
cluster separability measures for detecting bad projections, our
models also rely on accuracy measures to find accurate projections
among the ones that contain readable patterns. This result logically
stems from the fact that users do not pay much attention to the
semantics inside visualizations if the instances do not form readable
patterns. At the same time, users will not select visualizations
containing clear patterns, which make no sense according to the
high-dimensional data though (e.g. clear clusters consisting of
random images).

Performance of DR techniques: A potential bias spanning
from the type of datasets selected (i.e. image collections) is that
linear techniques such as PCA get rated down. Given the fact that
images lie on a nonlinear manifold in the high-dimensional space,
it makes sense that linear DR methods such as PCA underperform
in comparison to UMAP or t-SNE.

To evaluate the generalization to new DR techniques, a leave-
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Fig. 9: Screenshot of the tool for ranking projections. The projections in the scatterplots column are ranked using Model 3. On
the left of the ranking, a metamap shows similar projections (w.r.t. the quality metrics) close together and dissimilar ones far
apart. The blue (resp. red) zone represent good (resp. bad) projections w.r.t. Model 3 scores. On the right of the ranking, the
average number of hearts given by participants is shown, as well as quality metric values.

one-dimensionality reduction-out (LODRO) error is calculated
for Model 1. Rather than splitting by dataset during our cross-
validation, as in LODO, we train to detect “good” and “bad”
projections by considering all dimensionality reduction techniques
but one. The LODRO procedure allows us to check if our analysis
applies to new, unseen, DR techniques.

Overall, our generalization error to new DR techniques is
settling at 59.8%, with a confidence interval of ± 9%. Figure 8
breaks down our results per DR technique for this analysis. GRP
and MDS have the worst generalization error. The explanation can
be that these particular methods bring very different projections
than the other DR techniques. However, users in our study
graded the projections resulting from GRP, SE and some UMAP
configurations as universally bad across all datasets (see Figure 2).
Users have even commented about how these projections appear
to be random. However, visualizations that appear to be random
to the human eye have in fact a very different quality according
to quality metrics, meaning that bad projections are not all bad
in the same way. On the flip side, most configurations of UMAP,
which is one of the newest proposed DR techniques in the literature,
generalize very well. An interesting future direction is to assess
which minimal set of dimensionality reduction techniques could be
jointly used to train models such as ours in order to ensure that the
resulting projections are diverse enough to generalize well.

It should be noted that the LODRO strategy cannot be easily
applied for the Models 2 and 3, since, in these setups, we would
require more DR techniques, and more than 20 total projections
per dataset in order to achieve significant results.

4.6 Model Selection
We now would like to select one of these models for our tool
DumbleDR. Theoretically, all three models can be used to reliably
make predictions for the introduced tasks. The accuracy of the
two nonlinear models 1 and 3 is, with values above 75%, slightly
higher than the accuracy of Model 2. If a user only wishes to
filter out bad projections, we recommend Model 1, as it has the
higher accuracy on our datasets. However, given that we have

set out to rank predictions, we have selected Model 3 to use in
our tool DumbleDR. The selection was made based on accuracy
performance criterion as with Model 3 better results shall be
expected in general.

5 DUMBLEDR
This section presents a web-based visual analytics tool, named
DumbleDR2, containing an implementation of Model 3, in order
to showcase how to use our technique. While Model 3 is used
in the tool, the other two models could be similarly plugged into
DumbleDR. The following sections present the tool in more details,
as well as two case studies showing the analysis of two new datasets
with our proposed model.

5.1 Presentation of the Tool
Our tool aim is to demonstrate how users can make sense of
our model outputs on novel datasets. DumbleDR (i) takes as
input new datasets, (ii) computes a range of projections and their
associated metrics, and (iii) outputs a ranking of the projections,
along with numerous statistics about their dataset quality. The tool
uses JavaScript, specifically the Druid package [15], to compute
all projections and metrics, and D3 [7] for visualizations.

Figure 9 shows a screenshot of DumbleDR. The tool can either
be used to explore new datasets or to check our experimental results.
After selecting a precomputed dataset or uploading a new one (on
the top-right corner of the screen), projections and their respective
quality metrics are computed. Without additional training required,
Model 3 will output a score for each projection of the dataset. The
output score is a real number which can be positive or negative.
The higher the number, the better the projection is. The resulting
projections are ranked in accordance to this output.

When uploading a novel dataset to our tool, the tool first com-
putes a number of projections, then the associated quality metrics,
and finally, the ranking. Of these three tasks, computing the metrics,

2. The tool is available at https://renecutura.eu/dumbledr/

https://renecutura.eu/dumbledr/
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Fig. 10: Top 3 best projections, as scored by Model 3, for three of the datasets we have collected: MNIST handwritten digits,
photos of flowers and, Art UK paintings. For each dataset, we provide metamaps where each square represents a projection
for the particular dataset. The metamaps are calculated by applying dimensionality reduction on the quality metrics space
and the color-coded contours represent the ranking score predicting human preferences. Well-liked projections tend to be
generated from the same neighbourhood in the metamap manifold. The spread of the ranking score varies across the three
datasets, informing the user that the best projections for a dataset are not necessarily great quality. For instance, the MNIST
dataset produces stronger candidates than the paintings dataset.

in particular the accuracy ones, is the most expensive operation.
This is because accuracy metrics use the high-dimensional space to
compute distance-based neighbors in order to compare them with
low-dimensional neighbors. If Scagnostics metrics take less than
a minute to compute for 40 projections of a dataset, separability
measures take minutes, and accuracy measures can span hours.

On the left of the screen, in Figure 9, a metamap shows the
similarity between the projections created based on a selected
dataset. This metamap is a UMAP projection over the metrics
calculated for each DR projection from the original dataset. This
approach was first introduced by Cutura et al. in their system
VisCoDeR [14]. The colors in the metamap represent the ranking
score of the visualizations: from dark blue for great visualizations,
according to Model 3, to dark red for low-ranked ones.

The spread of the ranking score outputed by Model 3 varies
from dataset to dataset. This can be seen in Figure 10, which shows
the metamap of three datasets, MNIST, Flower photography, and
ART UK paintings, and the corresponding top three projections.
The information encoded in the metamap contours can be used
to deduct that the projections from MNIST are rated high across
the ranking (large blue zone) and, therefore, that lower ranked
projections can also be considered. For the paintings dataset,
however, only few projections are good (large red zone), and
Model 3 helps to find these good projections. The flower dataset,
in the middle of Figure 10, is balanced, as it contains both good
and bad projections. In conclusion, not all produced projections
are equal in terms of quality, and our ranking score, a combination
of the metrics based on user preferences, is indicative of that.

On the right of the metamap in the tool (see Figure 9), the
ranking of visualizations is presented, with arrows linking them
to their position on the metamap. The DR column, which is on
the right of the scatterplots column, provides all information about
the embeddings used to obtain the visualization, along with their
parametrization when relevant. The other columns show other
information like the average number of points the visualization
obtained during the user experiment, if available, and the scores
from the individual quality metrics. The user can compare the
ranking score with the average points awarded by people for each

projection during the user study.

5.2 Use Cases
In this section, we present two use cases on two distinct and novel
datasets that were not used in the user study or the previous analysis.
The objective of the use cases is to present how to use our tool,
and therefore the implementation of Model 3, to obtain projections
ranked by quality.

5.2.1 Use Case 1: The Pets Dataset
In a first use case, let us consider a user who wants to get a
visualization of the pets dataset [34]. This dataset contains 38
classes of various breeds of cats and dogs. All previous datasets
used in this analysis contained a maximum of 7 classes. The reason
was to avoid overwhelming users during our study. In this case
study, we aim to see if our technique can be successfully applied
on datasets with a much higher number of classes.

Fig. 11: Top 3 projections given by our tool on the pets dataset.
The ranking is provided by Model 3 and shows that UMAP
with some particular parametrizations offers visualizations of
good quality.

Figure 11 shows the best projections that can be obtained on this
dataset. DumbleDR with Model 3 shows that UMAP can provide
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good visualizations of the pets dataset, and it also provides the
parametrization to obtain these good UMAP projections. Getting
the right parametrization is essential, as the worst visualizations,
in the most red parts of the metamap, are also UMAP projections,
albeit with different parametrizations.

5.2.2 Use Case 2: Selecting Good Metamaps
As a second use case we discuss the right choice of metamaps for
comparing projections. Defined by Cutura et al. [14] and used in
this paper, metamaps are projections of projections. They are used
to compare projections, and find similar or dissimilar projections,
encoded by the distance in between points (projections) in the
metamap. Another example use of a metamap would be to collect
the most different projections in order to get different views of
the same data. In order to do that, one would compute hundreds
of projections, produce the metamap, and consider the projections
that are the most distant from another. However, in all applications,
if the metamap used is not accurate or not readable, no insight can
be extracted from it.

We produced the metamaps for this use case by taking all the
projections generated by our datasets (Table 1), computing the met-
rics for each of them, and finally applying dimensionality reduction
techniques on them. Therefore, each point in the visualization is
a metamap of projections. The separability metrics took as labels
the dataset associated with the projection. We followed the same
procedures as described in Section 3.

Fig. 12: Top 3 projections given by our tool on the set of
metamaps. The ranking is provided by Model 3 and shows
that UMAP with some particular parametrizations offers
visualizations of good quality.

Figure 12 shows the best metamaps according to the combi-
nation of metrics from Model 3. As for the previous example,
UMAP provides the best metamaps when a certain parametrization
is chosen. The metamaps shown by the tool for the other datasets
are indeed produced by UMAP with the neighbours set to 7, and
minimum distance of 0.8, which was selected by our algorithm as
the best. The best metamaps showed that the projections are loosely
clustered in accordance to dataset, rather than DR technique.

By using our tool and the combination of quality metrics
implemented in it (i.e. Model 3), users can upload their dataset
and get the techniques and parametrizations that provide the best
projections. This eases the cumbersome process of (i) running many
different DR techniques, (ii) testing many different parametriza-
tions, (iii) finding, implementing and understanding many different
quality metrics, and most importantly, (iv) selecting the best
projection according to these quality metrics. Indeed, regarding

(iv), our tool provides the combination of quality metrics that best
predicts what users would consider as being a projection of quality.

6 LIMITATIONS & FUTURE WORK

As all research, our work comes with a set of limitations, which
specifically attain to the modeling approach (Section 4) based on
inherently imperfect human subject data (Section 3).

6.1 On the Existence of Misleading Projections

An obvious concern one can have is that human subjects can select
visually appealing projections that are nonetheless wrong with
respect to the high-dimensional data (false positives). Based on
the breadth and expertise of our user sample, as well as on the
intrinsic availability to information regarding the high-dimensional
space (thumbnail images), we are confident that if any such “false
positives” existed, they would have been caught and marked as
misleading or bad. Given that, our different models show that
the majority of projections flagged as bad by participants can be
detected using Scagnostics and separability measures. Given that
no accuracy metric is needed for spotting these bad projections, it
rises the question of whether projections where meaningful clusters
are formed in the visualization, even though these clusters do not
exist in the high-dimensional space, are even possible.

6.2 On the Limited Breadth of Dataset Types

A weakness introduced by our study is that we only use image-
based datasets. We did so, as images give a natural anchor into the
high-dimensional space, which was essential for our purpose (see
above). For this reason, we can only speculate that 1) users maintain
their preferences for different dataset types, and, 2) that the metrics
applied on different dataset types generate a similarly distributed
metric dataset. An interesting future research direction would
consist of extending the study with additional datasets of different
types, such as tabular or text data as used in the quantitative survey
from Espadoto et al. [17]. Such studies will necessitate adequate
low-dimensional representations of the high-dimensional tabular
or text space, similar to the image thumbnails for image datasets.
Glyphs might be an interesting route here.

6.3 On the Number of DR Techniques and Quality Met-
rics

To the best of our knowledge, the DR techniques and quality metrics
presented in this paper are a representative set of what is popular
in the literature. However, one can argue that DR techniques and
quality metrics that are not yet popular are not used. Even more,
one can argue that new DR techniques and quality metrics can
be invented in the future. While this is true, one contribution of
this paper is also to present a framework on the use of quality
metrics to predict user preferences in projections. This means that
new metrics can be plugged into our framework so that a new
combination is automatically learned and then analyzed without
needing additional user feedback. Similarly, the combination can be
re-trained on projections produced by new DR techniques, which
would require a new user evaluation of these projections.
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6.4 Predicting User Behavior when Comparing Projec-
tions
Potential future work can consist of using the characteristics from
users in our models to derive a different combination of metrics
per user profile. This could be done, for instance, by using variants
of BTm. Indeed, the BTm presented in this paper can be used to
analyze how user characteristics influenced their comparisons of
projections. While BTm was used to predict the preferences based
on features of the compared objects (the projections), BTm can
also be used to predict the preferences based on the features of the
ones that stated their preferences.

7 CONCLUSION

This paper tackles the problem of assessing the quality of dimen-
sionality reduction (DR) visualizations using metrics from two
research communities. The first group of metrics comes from
the machine learning (ML) community and is used to assess
the faithfulness of visualizations w.r.t. the high-dimensional (HD)
data. The second group of metrics comes from the information
visualization (VIS) community and is used to quantify the presence
of readable patterns in the visualization. We proposed combining
these different metrics in order to identify the important ones and
draw conclusions for the two communities. We implemented a
series of machine learning models to predict human preferences
and examine to what extent metrics from both communities are
used. The final model (Model 3) achieves 78.09% accuracy in
predicting both well-liked and misleading projections. Furthermore,
Model 3 was implemented in a tool to demonstrate the capabilities
of the proposed technique to highlight high quality projections.

In all three models, Scagnostics and separability measures
from the VIS community have a large impact for predicting user
choices. In particular, these metrics were able to easily discriminate
between visualizations deemed good or bad by users. It seems that
accuracy metrics from the ML community are secondary, but they
make it possible to discriminate between accurate and misleading
visualizations with readable patterns.
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