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Figure 1: A detail view on a section of the t-SNE projection of the Art UK Paintings dataset. Gridified with HagridGC.

ABSTRACT
A common enhancement of scatterplots represents points as small
multiples, glyphs, or thumbnail images. As this encoding often
results in overlaps, a general strategy is to alter the position of
the data points, for instance, to a grid-like structure. Previous ap-
proaches rely on solving expensive optimization problems or on
dividing the space that alter the global structure of the scatterplot.
To find a good balance between efficiency and neighborhood and
layout preservation, we propose Hagrid, a technique that uses
space-filling curves (SFCs) to “gridify” a scatterplot without em-
ploying expensive collision detection and handling mechanisms.
Using SFCs ensures that the points are plotted close to their original
position, retaining approximately the same global structure. The
resulting scatterplot is mapped onto a rectangular or hexagonal
grid, using Hilbert and Gosper curves. We discuss and evaluate the
theoretic runtime of our approach and quantitatively compare our
approach to three state-of-the-art gridifying approaches, DGrid,
Small multiples with gaps SMWG, and CorrelatedMultiples CMDS,
in an evaluation comprising 339 scatterplots. Here, we compute
several quality measures for neighborhood preservation together
with an analysis of the actual runtimes. The main results show
that, compared to the best other technique, Hagrid is faster by a
factor of four, while achieving similar or even better quality of the
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gridified layout. Due to its computational efficiency, our approach
also allows novel applications of gridifying approaches in interac-
tive settings, such as removing local overlap upon hovering over a
scatterplot.
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1 INTRODUCTION
Scatterplots are widely used representations for 2D data. The po-
sition of the dot is the main visual encoding and allows the user
to perceive proximity or similarity between individual data points.
Additional channels, such as color, shape, and size, can be used to
show other properties of the respective data point.

A possible enhancement for scatterplots is replacing dots with
meaningful glyphs or images that provide additional semantic in-
formation [43]. For instance, the individual points can represent the
handwritten digits from the MNIST dataset [7]. In that case, their
positions are the 2D projections resulting from applying dimen-
sionality reduction to the high-dimensional dataset. For datasets
that are not sourced from images, we may use glyphs, which may
have various shapes and sizes, such as circular or hexagonal ones.
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In these cases, occlusions stemming from overlapping points might
impede the readability of the scatterplot [18]. A common approach
to dealing with this issue is to detect collisions between image or
glyph points and slightly jitter or move them around to reduce the
overlap. Handling collisions is also necessary in graph drawing,
wordles, and in gridifying maps.

Techniques formulated as optimization problems [23, 28] pro-
duce overlap-free layouts with high quality, but come with high
runtimes, impeding interactive applications. Techniques generat-
ing space-filling results have better runtimes [9, 18], but can only
preserve the shape and patterns of the scatterplot if adding dummy
points, which also increases the runtime complexity for large grids.
Our work is primarily motivated by dimensionality reduction pro-
cesses in which users have to frequently change the parameteriza-
tion of the algorithms to find good results. For such applications, a
good tradeoff between fast runtimes and maintaining the original
global structure is important.

To address these issues, we propose Hagrid1, a technique that
uses space-filling curves (SFCs) to “gridify” a scatterplot. SFCs are
created by a starting pattern repeatedly replacing the vertices of the
pattern with the same pattern, but rotated and flipped, so that the
ends of the pattern connect to each other. This process creates a self-
similar and self-avoiding curve. Most importantly, this recursion is
bijective, i.e., a point in the area of the SFC can be mapped to a 1D
index on the curve, and then decoded back to the 2D domain. The
vertices of the SFCs correspond to the centers of the squared (HC)
or hexagonal (GC) cells on the resulting grid, where the glyph or
image point will be ultimately plotted. We use these properties to
align the points of a scatterplot on a grid and to handle collisions,
i.e., points mapped to the same SFC vertex or the same cell on the
grid. We resolve collisions on the curve by moving the respective
point left or right on the SFC (see Algorithm 2).

To evaluate Hagrid, we quantitatively compare it with the three
related approaches. To this end, we use 339 scatterplots and compute
different quality metrics on neighborhood preservation and layout
similarity, as well as runtimes. Our results indicate that Hagrid
is substantially faster while keeping similar or even better visual
quality. In summary, we make the following main contributions:

• Hagrid, a technique for aligning 2D points on a grid, defined
using space-filling curves.

• The results of a quantitative evaluation comparing Hagrid
to DGrid, CorrelatedMultiples (CMDS), and Small Multiples
with Gaps (SMWG).

Equipped with this faster approach, we provide two case stud-
ies in the supplemental material illustrating how it can be used
in interactive applications and to visualize large datasets. Our
implementations of Hagrid and all evaluation metrics used are
available, both in Python (https://github.com/kix2mix2/Hagrid) and
JavaScript (https://github.com/saehm/hagrid).

2 RELATEDWORK
We review existing techniques for collision removal or reduction
in scatterplots and similar visual encoding techniques. Closest to
our work are approaches that seek to remove overlap of point
representations by altering their position. The problem of point
1Hagrid is short for Hilbert And Gosper Curve-based GRIDs

positioning occurs across different visualization types. We use the
visualization type to categorize them into the following groups:

Graphs: Node Overlap Removal. The idea of removing node over-
lap in graph drawing is similar to our approach. For example, MI-
OLA [16] arranges rectangular boxes in a way such that no overlap
occurs anymore and the neighborhood of a box is preserved as
much as possible. It uses a mixed integer quadratic optimization
formulation, which can be solved by interfacing to optimization
engines. To align all points on a grid, MIOLA requires additional
constraints, further increasing the runtime. The algorithm gets mea-
sured and compared with VPSC [10], Prism [13], Voronoi [8], and
RWordle-C [38], which have the same goal and use case. For com-
parison, they use various quality metrics: Euclidean distance, layout
similarity, orthogonal ordering, size increase, and neighborhood
preservation. The selected datasets are video snippet collections.
The runtime success is based on solving their proposed formulation
with Gurobi, the fastest optimization engine commercially avail-
able. Nachmanson et al. [30] builds a minimum spanning tree and
grows edges between colliding nodes. They compare their tech-
nique GTree with Prism [13] by measuring the area of the result,
edge length dissimilarity, and procrustean similarity [4]. Marcílio-
Jr et al. [24] also evaluate techniques [10, 13, 17, 33, 38] of node
overlap removal. All of those techniques were compared to at least
one of the baselines implemented for this paper, and hence were
not selected for our evaluation.

Space-filling Treemaps. NMap [9] seeks to generate a space-
filling treemap of a given visual area. Starting with a scatterplot, it
recursively replaces the individual dots with unevenly sized rect-
angular boxes, which eventually form a treemap. They compare
their method with OOT (One-dimensional Ordered Treemap) and
SOT (Spatially-ordered Treemap) by comparing the aspect-ratio of
individual boxes for each point, displacement, and neighborhood
preservation. They evaluate the relationship between runtime and
number of points on nine generated datasets. NMap, OOT, and SOT
have in common that areas should be transformed in such a way
that the proximity between objects remains intact, thereby filling
the whole visualization plane. NMap has an extension that adds
points in such a way that the algorithm results in a layout where
all generated bounding-boxes have the same size. By comparison,
our technique preserves as much as possible the distances (i.e.,
empty spaces) between points and generates equally sized squares
or hexagons by default.

Maps. Several techniques exist for arranging geographical en-
tities to uniform tiles, for instance, small multiples with gaps
(SMWG [28]), generating tile maps [26], or coherent grid maps [29].
These methods work on the centroids of geographical areas, trying
to maintain the global shape while keeping potential adjacency of
respective areas. Evaluating the use case of these techniques needs
additional metrics, for instance, orthogonal ordering is important.
Simplifying maps has a high demand on visual quality to keep the
map recognizable, but runtimes are relatively unimportant as they
are mostly used in a static setting. In contrast, we focus on use cases
like gridifying dimensionality reduction and interactive settings, in
which runtime plays a central role.
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Figure 2: In (a) and (b) on the left, we show a set of randomly generated 2D points mapped to the Hilbert and Gosper curves
at the first level of depth. In the other images of (a) and (b), we show the index number of each vertex for the two curves. In
the transformation from 2D to 1D, each point is assigned its own index on the Hilbert/Gosper curve. In the level 1 depictions
(left), points collide because there are not enough cells to fit all the points. As levels increase, collisions decrease but can still
occur. Algorithm 2 adapts the initially assigned position to the closest available one on the curve. Each step producesm times
the number of cells in the previous level. So, depending on the number of cells in the starting pattern, the SFC hasml cells at
the lth level (see Table 1).

Scatterplots: GridFit [20] uses quad trees to gridify scatterplots
and proposes two baselines for their evaluation: a naive approach
using nearest neighbors to find the best available cell to place
colliding point, and one employing SFCs to handle overlap. Their
SFC baseline shares some commonalities to our method, but only
uses the SFC for the grid coordinate computation, whereas Hagrid
uses the SFCs for collision handling, which constitute the biggest
runtime efficiency.GridFit, as presented in the paper, is not entirely
reproducible and none of the related work, that we are aware of,
evaluated against it.

CorrelatedMultiples (CMDS) [23] use a variation of MDS to “grid-
ify” data plots. Their use case is to show uniformly-sized small
multiples instead of dots in a scatterplot to enrich the visualiza-
tion with more information. They follow an approach similar to a
force-directed layout method, usually employed for graphs. Their
evaluation focuses on the runtime analysis. They compare their
technique against SpatialGrid [46], and GridMap [11]. They also
conduct a user study for analyzing the usefulness of small multiples
in a scatterplot with favorable results.

DGrid [18] takes a similar space dividing approach to GridFit,
and bisects the visual space repeatedly, so that each point has its
own rectangular or squared grid cell while preserving neighbor-
hoods. They compare their technique with Kernelized Sorting [34],
Self-Sorting Map [39], and IsoMatch [12]. This evaluation is the
most extensive one, by evaluating neighborhood preservation, lay-
out similarity, and cross-correlation on a range of datasets from the
UCI Machine Learning Repository.

SMWG, CMDS and DGrid address the same use case as we do
and are, thus, primary candidates for comparison. We have selected
some of the quality metrics that they used in their individual evalu-
ations (see Section 4).

3 TECHNIQUE
This section starts by providing some background on space-filling
curves (SFCs), and specifically Hilbert and Gosper curves. We also
derive a list of properties that are beneficial for our goal.

3.1 Background and Properties of Space-filling
Curves

SFCs start with a pattern that is recursively repeated. For the Hilbert
curve (HC) [19], it is the pattern
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Figure 2: In (a) and (b) on the left, we show a set of randomly generated 2D points mapped to the Hilbert and Gosper curves
at the first level of depth. In the other images of (a) and (b), we show the index number of each vertex for the two curves. In
the transformation from 2D to 1D, each point is assigned its own index on the Hilbert/Gosper curve. In the level 1 depictions
(left), points collide because there are not enough cells to fit all the points. As levels increase, collisions decrease but can still
occur. Algorithm 2 adapts the initially assigned position to the closest available one on the curve. Each step produces𝑚 times
the number of cells in the previous level. So, depending on the number of cells in the starting pattern, the SFC has𝑚𝑙 cells at
the 𝑙th level (see Table 1).

Scatterplots: GridFit [20] uses quad trees to gridify scatterplots
and proposes two baselines for their evaluation: a naive approach
using nearest neighbors to find the best available cell to place
colliding point, and one employing SFCs to handle overlap. Their
SFC baseline shares some commonalities to our method, but only
uses the SFC for the grid coordinate computation, whereas Hagrid
uses the SFCs for collision handling, which constitute the biggest
runtime efficiency.GridFit, as presented in the paper, is not entirely
reproducible and none of the related work, that we are aware of,
evaluated against it.

CorrelatedMultiples (CMDS) [23] use a variation of MDS to “grid-
ify” data plots. Their use case is to show uniformly-sized small
multiples instead of dots in a scatterplot to enrich the visualiza-
tion with more information. They follow an approach similar to a
force-directed layout method, usually employed for graphs. Their
evaluation focuses on the runtime analysis. They compare their
technique against SpatialGrid [46], and GridMap [11]. They also
conduct a user study for analyzing the usefulness of small multiples
in a scatterplot with favorable results.

DGrid [18] takes a similar space dividing approach to GridFit,
and bisects the visual space repeatedly, so that each point has its
own rectangular or squared grid cell while preserving neighbor-
hoods. They compare their technique with Kernelized Sorting [34],
Self-Sorting Map [39], and IsoMatch [12]. This evaluation is the
most extensive one, by evaluating neighborhood preservation, lay-
out similarity, and cross-correlation on a range of datasets from the
UCI Machine Learning Repository.

SMWG, CMDS and DGrid address the same use case as we do
and are, thus, primary candidates for comparison. We have selected
some of the quality metrics that they used in their individual evalu-
ations (see Section 4).

3 TECHNIQUE
This section starts by providing some background on space-filling
curves (SFCs), and specifically Hilbert and Gosper curves. We also
derive a list of properties that are beneficial for our goal.

3.1 Background and Properties of Space-filling
Curves

SFCs start with a pattern that is recursively repeated. For the Hilbert
curve (HC) [19], it is the pattern , creating a grid of squares in-
dexed continuously from 0 to𝑚𝑙 , where𝑚 is the number of vertices
in the pattern and 𝑙 the number of recursions, referred in this paper
as the (depth) level of the curve. The Gosper curve (GC) [14] creates
a hexagonal grid with the start-pattern . Examples of HC and GC
at various levels are available in Figure 2.

Such techniques take advantage of the fast mapping either from
2D to 1Dor vice versa. They use thismapping and the neighborhood-
preservation property to visualize different aspects of specific data.
Our technique does not focus on mapping data for a specific use
case. Our primary goal is more general, i.e., creating a gridified lay-
out without any overlap by re-mapping points. While we illustrate
our approach with scatterplots, it can be used for any data that can
be processed as a set of (𝑥,𝑦) coordinates, for instance, node-link
diagrams or point clouds.

In our approach, we specifically use Hilbert and Gosper curves,
as they have some desirable properties for visualization use cases
that we seek to leverage with our approach:

• Space-filling – as the level of the curve increases toward
infinity, every high-dimensional point can be represented by
a vertex of the 1D curve. This ensures there is no constraint
on either the dimensionality or the number of items to be
visualized [41].

• Bijectivity – 2D points can be mapped to the 1D curve and
back in the 2D plane, allowing us to switch between the two
representations [44].

• Neighborhood-preservation – a point always retains ap-
proximately the same position on the curve regardless of
whether the level of the curve is increased or decreased [44].

• Stability – small changes in the position on a curve yield
the smallest possible change in the 2D outputs [41].

3.2 Proposed Technique
With Hagrid, our goal is to create overlap-free, gridified scatter-
plots where the dots are replaced with images or glyphs. Our tech-
nique differs from the space-filling approaches (DGrid, NMap)

, creating a grid of squares in-
dexed continuously from 0 toml , wherem is the number of vertices
in the pattern and l the number of recursions, referred in this paper
as the (depth) level of the curve. The Gosper curve (GC) [14] creates
a hexagonal grid with the start-pattern
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Figure 2: In (a) and (b) on the left, we show a set of randomly generated 2D points mapped to the Hilbert and Gosper curves
at the first level of depth. In the other images of (a) and (b), we show the index number of each vertex for the two curves. In
the transformation from 2D to 1D, each point is assigned its own index on the Hilbert/Gosper curve. In the level 1 depictions
(left), points collide because there are not enough cells to fit all the points. As levels increase, collisions decrease but can still
occur. Algorithm 2 adapts the initially assigned position to the closest available one on the curve. Each step produces𝑚 times
the number of cells in the previous level. So, depending on the number of cells in the starting pattern, the SFC has𝑚𝑙 cells at
the 𝑙th level (see Table 1).

Scatterplots: GridFit [20] uses quad trees to gridify scatterplots
and proposes two baselines for their evaluation: a naive approach
using nearest neighbors to find the best available cell to place
colliding point, and one employing SFCs to handle overlap. Their
SFC baseline shares some commonalities to our method, but only
uses the SFC for the grid coordinate computation, whereas Hagrid
uses the SFCs for collision handling, which constitute the biggest
runtime efficiency.GridFit, as presented in the paper, is not entirely
reproducible and none of the related work, that we are aware of,
evaluated against it.

CorrelatedMultiples (CMDS) [23] use a variation of MDS to “grid-
ify” data plots. Their use case is to show uniformly-sized small
multiples instead of dots in a scatterplot to enrich the visualiza-
tion with more information. They follow an approach similar to a
force-directed layout method, usually employed for graphs. Their
evaluation focuses on the runtime analysis. They compare their
technique against SpatialGrid [46], and GridMap [11]. They also
conduct a user study for analyzing the usefulness of small multiples
in a scatterplot with favorable results.

DGrid [18] takes a similar space dividing approach to GridFit,
and bisects the visual space repeatedly, so that each point has its
own rectangular or squared grid cell while preserving neighbor-
hoods. They compare their technique with Kernelized Sorting [34],
Self-Sorting Map [39], and IsoMatch [12]. This evaluation is the
most extensive one, by evaluating neighborhood preservation, lay-
out similarity, and cross-correlation on a range of datasets from the
UCI Machine Learning Repository.

SMWG, CMDS and DGrid address the same use case as we do
and are, thus, primary candidates for comparison. We have selected
some of the quality metrics that they used in their individual evalu-
ations (see Section 4).

3 TECHNIQUE
This section starts by providing some background on space-filling
curves (SFCs), and specifically Hilbert and Gosper curves. We also
derive a list of properties that are beneficial for our goal.

3.1 Background and Properties of Space-filling
Curves

SFCs start with a pattern that is recursively repeated. For the Hilbert
curve (HC) [19], it is the pattern , creating a grid of squares in-
dexed continuously from 0 to𝑚𝑙 , where𝑚 is the number of vertices
in the pattern and 𝑙 the number of recursions, referred in this paper
as the (depth) level of the curve. The Gosper curve (GC) [14] creates
a hexagonal grid with the start-pattern . Examples of HC and GC
at various levels are available in Figure 2.

Such techniques take advantage of the fast mapping either from
2D to 1Dor vice versa. They use thismapping and the neighborhood-
preservation property to visualize different aspects of specific data.
Our technique does not focus on mapping data for a specific use
case. Our primary goal is more general, i.e., creating a gridified lay-
out without any overlap by re-mapping points. While we illustrate
our approach with scatterplots, it can be used for any data that can
be processed as a set of (𝑥,𝑦) coordinates, for instance, node-link
diagrams or point clouds.

In our approach, we specifically use Hilbert and Gosper curves,
as they have some desirable properties for visualization use cases
that we seek to leverage with our approach:

• Space-filling – as the level of the curve increases toward
infinity, every high-dimensional point can be represented by
a vertex of the 1D curve. This ensures there is no constraint
on either the dimensionality or the number of items to be
visualized [41].

• Bijectivity – 2D points can be mapped to the 1D curve and
back in the 2D plane, allowing us to switch between the two
representations [44].

• Neighborhood-preservation – a point always retains ap-
proximately the same position on the curve regardless of
whether the level of the curve is increased or decreased [44].

• Stability – small changes in the position on a curve yield
the smallest possible change in the 2D outputs [41].

3.2 Proposed Technique
With Hagrid, our goal is to create overlap-free, gridified scatter-
plots where the dots are replaced with images or glyphs. Our tech-
nique differs from the space-filling approaches (DGrid, NMap)
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Figure 3: Illustration of Algorithm 1 and Algorithm 2 of Hagrid using the Hilbert curve. An initial scatterplot (left) consisting
of 10 images of the Art UK Paintings dataset is gridified with Algorithm 1. One image after another gets assigned to a vertex of
the Hilbert curve (middle). If a collision occurs (yellow background), Algorithm 2 resolves it by moving the image to another
vertex. The first collision occurs at step 3 and gets resolved by moving it to the next empty spot to the left. The next collision
happens in the same area at step 8. Algorithm 2 finds the next empty valid spot on the right, to the left are no spots available.
The last collision appears at the end (step 10). Algorithm 2 finds two empty spot to the left and right. The collision gets resolved
by putting the respective point to the right, because the 2D distance to the right spot is smaller.

above in that we do not only seek to preserve the local neigh-
borhoods, but also the global structure of a scatterplot. By global
structure, we mean the preservation of the characteristics of a set
of points projected into 2D Euclidean space. These properties can
include, but are not limited to, measures such as density, skewness,
shape, and outliers [37, 45]. Loss of global structure implies that
information like outliers or point density is lost in the resulting
layout. CMDS and SMWG try to retain the global structure of the
visualization, but have high runtimes.

Hagrid consists of following steps:

(1) Begin by setting the level l of the used SFC, where l ≥
lmin (see Equation 1).

(2) Assign the datapoints to a grid defined by level l and the used
SFC, дl : R2 → Gl = {(i, j)}, where the pairs (i, j) represent
the possible coordinates of the grid Gl (see Figure 2).

(3) Use fl : Gl → Il ⊂ N, where Il is the set of indices or
vertices of the SFC of level l .

(4) If a point is assigned to an already occupied vertex of the
SFC, Algorithm 2 resolves the collision.

(5) Finally, f −1l : Il → Gl maps the points back onto the grid
Gl , resulting in an overlap-free scatterplot.

By doing so, Hagrid transforms the continuous 2D problem
into a discretized 1D problem. This transformation allows us to
positively impact the runtime of our algorithm.

The function дl maps the original 2D coordinates to the SFC.
First, the data is transformed to fit into the boundaries of grid Gl .
Then, the transformed coordinates get rounded to the grid cell (i, j)
that the datapoint should be assigned to. The main added value of
using the SFC is, therefore, the collision handling.

Figure 3 conceptually illustrates the process introduced above,
using images from the public Art UK Paintings dataset [6] instead
of dots. The mapping (fl ◦ дl ) : R2 → Il (steps 2 & 3 in the list)
returns an index, transforming the position of the 2D point to a 1D
vertex on the SFC (see Figure 3 middle). The SFC needs to be deep

enough to hold all the points of the used dataset (see Equation 1).
We loop through each point in the list and assign it a 1D index
on the SFC. Collision handling happens in the 1D space, on the
fly. If a new point is assigned to an occupied vertex, we move the
point to the left or to the right, based on which direction offers the
closest empty spot (yellow areas in Figure 3). After the final point
positioning, all collisions are resolved (Figure 3 right). Finally, the
1D vertices are transformed back to the 2D grid Gl , using function
f −1l : Il → Gl . The entire process is detailed in Algorithm 1.

The final set of coordinates represents the centers of square or
hexagonal cells of uniform sizes. The size of the cells is determined
by the level of depth of the curve (l ), introduced in Section 3.1. The
depth level is, therefore, a parameter of our technique. Since our
goals cover both being able to plot images or glyphs, and completely
avoiding overlaps, we can reformulate them as follows: we want to
plot a set of images as large as possible without overlap.

Given the space-filling property of the curves, if we were to
generate deep enough curves, no overlap would happen, as the
curve would cross through all 2D space as l → ∞. In other words,
the gridified structure would approach the original layout of the
scatterplots. However, a higher curve level l also leads to a more
fine-grained grid, and hence smaller cells where the glyphs and
images can be plotted. For this reason, we want to calculate the
minimal level of depth according to the number of points to be
plotted. This lmin is the default value and calculated by:

lmin =
⌈
logm n

⌉
, (1)

wheren is the number of points to be scattered, andm is the number
of vertices in the initial recursion pattern (i.e., the SFCs at level 1).
For HC (
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(b) Gosper curve level 1–3

Figure 2: In (a) and (b) on the left, we show a set of randomly generated 2D points mapped to the Hilbert and Gosper curves
at the first level of depth. In the other images of (a) and (b), we show the index number of each vertex for the two curves. In
the transformation from 2D to 1D, each point is assigned its own index on the Hilbert/Gosper curve. In the level 1 depictions
(left), points collide because there are not enough cells to fit all the points. As levels increase, collisions decrease but can still
occur. Algorithm 2 adapts the initially assigned position to the closest available one on the curve. Each step produces𝑚 times
the number of cells in the previous level. So, depending on the number of cells in the starting pattern, the SFC has𝑚𝑙 cells at
the 𝑙th level (see Table 1).

Scatterplots: GridFit [20] uses quad trees to gridify scatterplots
and proposes two baselines for their evaluation: a naive approach
using nearest neighbors to find the best available cell to place
colliding point, and one employing SFCs to handle overlap. Their
SFC baseline shares some commonalities to our method, but only
uses the SFC for the grid coordinate computation, whereas Hagrid
uses the SFCs for collision handling, which constitute the biggest
runtime efficiency.GridFit, as presented in the paper, is not entirely
reproducible and none of the related work, that we are aware of,
evaluated against it.

CorrelatedMultiples (CMDS) [23] use a variation of MDS to “grid-
ify” data plots. Their use case is to show uniformly-sized small
multiples instead of dots in a scatterplot to enrich the visualiza-
tion with more information. They follow an approach similar to a
force-directed layout method, usually employed for graphs. Their
evaluation focuses on the runtime analysis. They compare their
technique against SpatialGrid [46], and GridMap [11]. They also
conduct a user study for analyzing the usefulness of small multiples
in a scatterplot with favorable results.

DGrid [18] takes a similar space dividing approach to GridFit,
and bisects the visual space repeatedly, so that each point has its
own rectangular or squared grid cell while preserving neighbor-
hoods. They compare their technique with Kernelized Sorting [34],
Self-Sorting Map [39], and IsoMatch [12]. This evaluation is the
most extensive one, by evaluating neighborhood preservation, lay-
out similarity, and cross-correlation on a range of datasets from the
UCI Machine Learning Repository.

SMWG, CMDS and DGrid address the same use case as we do
and are, thus, primary candidates for comparison. We have selected
some of the quality metrics that they used in their individual evalu-
ations (see Section 4).

3 TECHNIQUE
This section starts by providing some background on space-filling
curves (SFCs), and specifically Hilbert and Gosper curves. We also
derive a list of properties that are beneficial for our goal.

3.1 Background and Properties of Space-filling
Curves

SFCs start with a pattern that is recursively repeated. For the Hilbert
curve (HC) [19], it is the pattern , creating a grid of squares in-
dexed continuously from 0 to𝑚𝑙 , where𝑚 is the number of vertices
in the pattern and 𝑙 the number of recursions, referred in this paper
as the (depth) level of the curve. The Gosper curve (GC) [14] creates
a hexagonal grid with the start-pattern . Examples of HC and GC
at various levels are available in Figure 2.

Such techniques take advantage of the fast mapping either from
2D to 1Dor vice versa. They use thismapping and the neighborhood-
preservation property to visualize different aspects of specific data.
Our technique does not focus on mapping data for a specific use
case. Our primary goal is more general, i.e., creating a gridified lay-
out without any overlap by re-mapping points. While we illustrate
our approach with scatterplots, it can be used for any data that can
be processed as a set of (𝑥,𝑦) coordinates, for instance, node-link
diagrams or point clouds.

In our approach, we specifically use Hilbert and Gosper curves,
as they have some desirable properties for visualization use cases
that we seek to leverage with our approach:

• Space-filling – as the level of the curve increases toward
infinity, every high-dimensional point can be represented by
a vertex of the 1D curve. This ensures there is no constraint
on either the dimensionality or the number of items to be
visualized [41].

• Bijectivity – 2D points can be mapped to the 1D curve and
back in the 2D plane, allowing us to switch between the two
representations [44].

• Neighborhood-preservation – a point always retains ap-
proximately the same position on the curve regardless of
whether the level of the curve is increased or decreased [44].

• Stability – small changes in the position on a curve yield
the smallest possible change in the 2D outputs [41].

3.2 Proposed Technique
With Hagrid, our goal is to create overlap-free, gridified scatter-
plots where the dots are replaced with images or glyphs. Our tech-
nique differs from the space-filling approaches (DGrid, NMap)

),m = 4 and for GC (
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(b) Gosper curve level 1–3

Figure 2: In (a) and (b) on the left, we show a set of randomly generated 2D points mapped to the Hilbert and Gosper curves
at the first level of depth. In the other images of (a) and (b), we show the index number of each vertex for the two curves. In
the transformation from 2D to 1D, each point is assigned its own index on the Hilbert/Gosper curve. In the level 1 depictions
(left), points collide because there are not enough cells to fit all the points. As levels increase, collisions decrease but can still
occur. Algorithm 2 adapts the initially assigned position to the closest available one on the curve. Each step produces𝑚 times
the number of cells in the previous level. So, depending on the number of cells in the starting pattern, the SFC has𝑚𝑙 cells at
the 𝑙th level (see Table 1).

Scatterplots: GridFit [20] uses quad trees to gridify scatterplots
and proposes two baselines for their evaluation: a naive approach
using nearest neighbors to find the best available cell to place
colliding point, and one employing SFCs to handle overlap. Their
SFC baseline shares some commonalities to our method, but only
uses the SFC for the grid coordinate computation, whereas Hagrid
uses the SFCs for collision handling, which constitute the biggest
runtime efficiency.GridFit, as presented in the paper, is not entirely
reproducible and none of the related work, that we are aware of,
evaluated against it.

CorrelatedMultiples (CMDS) [23] use a variation of MDS to “grid-
ify” data plots. Their use case is to show uniformly-sized small
multiples instead of dots in a scatterplot to enrich the visualiza-
tion with more information. They follow an approach similar to a
force-directed layout method, usually employed for graphs. Their
evaluation focuses on the runtime analysis. They compare their
technique against SpatialGrid [46], and GridMap [11]. They also
conduct a user study for analyzing the usefulness of small multiples
in a scatterplot with favorable results.

DGrid [18] takes a similar space dividing approach to GridFit,
and bisects the visual space repeatedly, so that each point has its
own rectangular or squared grid cell while preserving neighbor-
hoods. They compare their technique with Kernelized Sorting [34],
Self-Sorting Map [39], and IsoMatch [12]. This evaluation is the
most extensive one, by evaluating neighborhood preservation, lay-
out similarity, and cross-correlation on a range of datasets from the
UCI Machine Learning Repository.

SMWG, CMDS and DGrid address the same use case as we do
and are, thus, primary candidates for comparison. We have selected
some of the quality metrics that they used in their individual evalu-
ations (see Section 4).

3 TECHNIQUE
This section starts by providing some background on space-filling
curves (SFCs), and specifically Hilbert and Gosper curves. We also
derive a list of properties that are beneficial for our goal.

3.1 Background and Properties of Space-filling
Curves

SFCs start with a pattern that is recursively repeated. For the Hilbert
curve (HC) [19], it is the pattern , creating a grid of squares in-
dexed continuously from 0 to𝑚𝑙 , where𝑚 is the number of vertices
in the pattern and 𝑙 the number of recursions, referred in this paper
as the (depth) level of the curve. The Gosper curve (GC) [14] creates
a hexagonal grid with the start-pattern . Examples of HC and GC
at various levels are available in Figure 2.

Such techniques take advantage of the fast mapping either from
2D to 1Dor vice versa. They use thismapping and the neighborhood-
preservation property to visualize different aspects of specific data.
Our technique does not focus on mapping data for a specific use
case. Our primary goal is more general, i.e., creating a gridified lay-
out without any overlap by re-mapping points. While we illustrate
our approach with scatterplots, it can be used for any data that can
be processed as a set of (𝑥,𝑦) coordinates, for instance, node-link
diagrams or point clouds.

In our approach, we specifically use Hilbert and Gosper curves,
as they have some desirable properties for visualization use cases
that we seek to leverage with our approach:

• Space-filling – as the level of the curve increases toward
infinity, every high-dimensional point can be represented by
a vertex of the 1D curve. This ensures there is no constraint
on either the dimensionality or the number of items to be
visualized [41].

• Bijectivity – 2D points can be mapped to the 1D curve and
back in the 2D plane, allowing us to switch between the two
representations [44].

• Neighborhood-preservation – a point always retains ap-
proximately the same position on the curve regardless of
whether the level of the curve is increased or decreased [44].

• Stability – small changes in the position on a curve yield
the smallest possible change in the 2D outputs [41].

3.2 Proposed Technique
With Hagrid, our goal is to create overlap-free, gridified scatter-
plots where the dots are replaced with images or glyphs. Our tech-
nique differs from the space-filling approaches (DGrid, NMap)

),m = 7 (see Figure 2). The users
may always alter the level to achieve different results depending on
their individual goals. For example, if analyzing the global structure
of a scatterplot is more important, we recommend setting the level
to lmin + 1 or higher, or using the level of depth that guarantees a
user-defined minimum percentage of whitespace, by usingn ·(1+w)
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in Equation 1 instead of n, wherew is the percentage of whitespace.
For example, the level with guaranteed 50% whitespace is calculated
with l50% = ⌈logm (n · 1.5)⌉. Table 1 lists the maximum number of
cells available for different levels.

Table 1: The maximum number of points that can be en-
coded in an SFC of a particular level.

lmin 1 2 3 4 5 6 7
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(b) Gosper curve level 1–3

Figure 2: In (a) and (b) on the left, we show a set of randomly generated 2D points mapped to the Hilbert and Gosper curves
at the first level of depth. In the other images of (a) and (b), we show the index number of each vertex for the two curves. In
the transformation from 2D to 1D, each point is assigned its own index on the Hilbert/Gosper curve. In the level 1 depictions
(left), points collide because there are not enough cells to fit all the points. As levels increase, collisions decrease but can still
occur. Algorithm 2 adapts the initially assigned position to the closest available one on the curve. Each step produces𝑚 times
the number of cells in the previous level. So, depending on the number of cells in the starting pattern, the SFC has𝑚𝑙 cells at
the 𝑙th level (see Table 1).

Scatterplots: GridFit [20] uses quad trees to gridify scatterplots
and proposes two baselines for their evaluation: a naive approach
using nearest neighbors to find the best available cell to place
colliding point, and one employing SFCs to handle overlap. Their
SFC baseline shares some commonalities to our method, but only
uses the SFC for the grid coordinate computation, whereas Hagrid
uses the SFCs for collision handling, which constitute the biggest
runtime efficiency.GridFit, as presented in the paper, is not entirely
reproducible and none of the related work, that we are aware of,
evaluated against it.

CorrelatedMultiples (CMDS) [23] use a variation of MDS to “grid-
ify” data plots. Their use case is to show uniformly-sized small
multiples instead of dots in a scatterplot to enrich the visualiza-
tion with more information. They follow an approach similar to a
force-directed layout method, usually employed for graphs. Their
evaluation focuses on the runtime analysis. They compare their
technique against SpatialGrid [46], and GridMap [11]. They also
conduct a user study for analyzing the usefulness of small multiples
in a scatterplot with favorable results.

DGrid [18] takes a similar space dividing approach to GridFit,
and bisects the visual space repeatedly, so that each point has its
own rectangular or squared grid cell while preserving neighbor-
hoods. They compare their technique with Kernelized Sorting [34],
Self-Sorting Map [39], and IsoMatch [12]. This evaluation is the
most extensive one, by evaluating neighborhood preservation, lay-
out similarity, and cross-correlation on a range of datasets from the
UCI Machine Learning Repository.

SMWG, CMDS and DGrid address the same use case as we do
and are, thus, primary candidates for comparison. We have selected
some of the quality metrics that they used in their individual evalu-
ations (see Section 4).

3 TECHNIQUE
This section starts by providing some background on space-filling
curves (SFCs), and specifically Hilbert and Gosper curves. We also
derive a list of properties that are beneficial for our goal.

3.1 Background and Properties of Space-filling
Curves

SFCs start with a pattern that is recursively repeated. For the Hilbert
curve (HC) [19], it is the pattern , creating a grid of squares in-
dexed continuously from 0 to𝑚𝑙 , where𝑚 is the number of vertices
in the pattern and 𝑙 the number of recursions, referred in this paper
as the (depth) level of the curve. The Gosper curve (GC) [14] creates
a hexagonal grid with the start-pattern . Examples of HC and GC
at various levels are available in Figure 2.

Such techniques take advantage of the fast mapping either from
2D to 1Dor vice versa. They use thismapping and the neighborhood-
preservation property to visualize different aspects of specific data.
Our technique does not focus on mapping data for a specific use
case. Our primary goal is more general, i.e., creating a gridified lay-
out without any overlap by re-mapping points. While we illustrate
our approach with scatterplots, it can be used for any data that can
be processed as a set of (𝑥,𝑦) coordinates, for instance, node-link
diagrams or point clouds.

In our approach, we specifically use Hilbert and Gosper curves,
as they have some desirable properties for visualization use cases
that we seek to leverage with our approach:

• Space-filling – as the level of the curve increases toward
infinity, every high-dimensional point can be represented by
a vertex of the 1D curve. This ensures there is no constraint
on either the dimensionality or the number of items to be
visualized [41].

• Bijectivity – 2D points can be mapped to the 1D curve and
back in the 2D plane, allowing us to switch between the two
representations [44].

• Neighborhood-preservation – a point always retains ap-
proximately the same position on the curve regardless of
whether the level of the curve is increased or decreased [44].

• Stability – small changes in the position on a curve yield
the smallest possible change in the 2D outputs [41].

3.2 Proposed Technique
With Hagrid, our goal is to create overlap-free, gridified scatter-
plots where the dots are replaced with images or glyphs. Our tech-
nique differs from the space-filling approaches (DGrid, NMap)
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Figure 2: In (a) and (b) on the left, we show a set of randomly generated 2D points mapped to the Hilbert and Gosper curves
at the first level of depth. In the other images of (a) and (b), we show the index number of each vertex for the two curves. In
the transformation from 2D to 1D, each point is assigned its own index on the Hilbert/Gosper curve. In the level 1 depictions
(left), points collide because there are not enough cells to fit all the points. As levels increase, collisions decrease but can still
occur. Algorithm 2 adapts the initially assigned position to the closest available one on the curve. Each step produces𝑚 times
the number of cells in the previous level. So, depending on the number of cells in the starting pattern, the SFC has𝑚𝑙 cells at
the 𝑙th level (see Table 1).

Scatterplots: GridFit [20] uses quad trees to gridify scatterplots
and proposes two baselines for their evaluation: a naive approach
using nearest neighbors to find the best available cell to place
colliding point, and one employing SFCs to handle overlap. Their
SFC baseline shares some commonalities to our method, but only
uses the SFC for the grid coordinate computation, whereas Hagrid
uses the SFCs for collision handling, which constitute the biggest
runtime efficiency.GridFit, as presented in the paper, is not entirely
reproducible and none of the related work, that we are aware of,
evaluated against it.

CorrelatedMultiples (CMDS) [23] use a variation of MDS to “grid-
ify” data plots. Their use case is to show uniformly-sized small
multiples instead of dots in a scatterplot to enrich the visualiza-
tion with more information. They follow an approach similar to a
force-directed layout method, usually employed for graphs. Their
evaluation focuses on the runtime analysis. They compare their
technique against SpatialGrid [46], and GridMap [11]. They also
conduct a user study for analyzing the usefulness of small multiples
in a scatterplot with favorable results.

DGrid [18] takes a similar space dividing approach to GridFit,
and bisects the visual space repeatedly, so that each point has its
own rectangular or squared grid cell while preserving neighbor-
hoods. They compare their technique with Kernelized Sorting [34],
Self-Sorting Map [39], and IsoMatch [12]. This evaluation is the
most extensive one, by evaluating neighborhood preservation, lay-
out similarity, and cross-correlation on a range of datasets from the
UCI Machine Learning Repository.

SMWG, CMDS and DGrid address the same use case as we do
and are, thus, primary candidates for comparison. We have selected
some of the quality metrics that they used in their individual evalu-
ations (see Section 4).

3 TECHNIQUE
This section starts by providing some background on space-filling
curves (SFCs), and specifically Hilbert and Gosper curves. We also
derive a list of properties that are beneficial for our goal.

3.1 Background and Properties of Space-filling
Curves

SFCs start with a pattern that is recursively repeated. For the Hilbert
curve (HC) [19], it is the pattern , creating a grid of squares in-
dexed continuously from 0 to𝑚𝑙 , where𝑚 is the number of vertices
in the pattern and 𝑙 the number of recursions, referred in this paper
as the (depth) level of the curve. The Gosper curve (GC) [14] creates
a hexagonal grid with the start-pattern . Examples of HC and GC
at various levels are available in Figure 2.

Such techniques take advantage of the fast mapping either from
2D to 1Dor vice versa. They use thismapping and the neighborhood-
preservation property to visualize different aspects of specific data.
Our technique does not focus on mapping data for a specific use
case. Our primary goal is more general, i.e., creating a gridified lay-
out without any overlap by re-mapping points. While we illustrate
our approach with scatterplots, it can be used for any data that can
be processed as a set of (𝑥,𝑦) coordinates, for instance, node-link
diagrams or point clouds.

In our approach, we specifically use Hilbert and Gosper curves,
as they have some desirable properties for visualization use cases
that we seek to leverage with our approach:

• Space-filling – as the level of the curve increases toward
infinity, every high-dimensional point can be represented by
a vertex of the 1D curve. This ensures there is no constraint
on either the dimensionality or the number of items to be
visualized [41].

• Bijectivity – 2D points can be mapped to the 1D curve and
back in the 2D plane, allowing us to switch between the two
representations [44].

• Neighborhood-preservation – a point always retains ap-
proximately the same position on the curve regardless of
whether the level of the curve is increased or decreased [44].

• Stability – small changes in the position on a curve yield
the smallest possible change in the 2D outputs [41].

3.2 Proposed Technique
With Hagrid, our goal is to create overlap-free, gridified scatter-
plots where the dots are replaced with images or glyphs. Our tech-
nique differs from the space-filling approaches (DGrid, NMap)
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The process of placing a point onto the SFC is similar to inserting
a value into a hash table. The recursion depth l of the SFC depends
on the number of points in the scatterplot (see Equation 1), and
defines the required number of steps of the index computation of a
single point. The computation of an index assignment of one point
using (fl ◦ дl ) : R2 → Il needs
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in Equation 1 instead of 𝑛, where𝑤 is the percentage of whitespace.
For example, the level with guaranteed 50% whitespace is calculated
with 𝑙50% = ⌈log𝑚 (𝑛 · 1.5)⌉. Table 1 lists the maximum number of
cells available for different levels.

Table 1: The maximum number of points that can be en-
coded in an SFC of a particular level.

𝑙min 1 2 3 4 5 6 7

4 16 64 256 1024 4096 16384

7 49 343 2401 16807 117649 823543

The process of placing a point onto the SFC is similar to inserting
a value into a hash table. The recursion depth 𝑙 of the SFC depends
on the number of points in the scatterplot (see Equation 1), and
defines the required number of steps of the index computation of a
single point. The computation of an index assignment of one point
using (𝑓𝑙 ◦ 𝑔𝑙 ) : R2 → 𝐼𝑙 needs 𝒪(𝑙) time, or — as 𝑙 depends on
𝑛 (Equation 1) — 𝒪(log𝑛) time. For all points, the overall runtime
is thus 𝒪(𝑛 · 𝑙) = 𝒪(𝑛 log𝑛).

Algorithm 1: Gridify scatterplot.
Data: 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑋 is the set of the

datapoints that should get gridified
Input: The dataset 𝑋 , the mapping functions 𝑔𝑙 , 𝑓𝑙 and 𝑓 −1

𝑙
,

the depth of the space-filling curve 𝑙 ≥ 𝑙min.
Result: 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛}, the set of datapoints layed out

on the respective grid.
�̃� = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑥𝑖 = 𝑔𝑙 (𝑥𝑖 ), ∀𝑖 ∈ {1, . . . , 𝑛}
𝑃 = new Map ()
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑝𝑖 = 𝑓𝑙 (𝑥𝑖 )
// check for collision.

if 𝑃 .has (𝑝𝑖 ) then
𝑝𝑖 =solveCollision(𝑝𝑖 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑃 .set (𝑝𝑖 , 𝑖)
// remap to 2D coordinates.

𝑌 = new Array(𝑛)
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑦𝑖 = 𝑓 −1
𝑙

(𝑝𝑖 )
return Y

The above considerations are valid as long as there is no collision
on the SFC. This best case occurs if the points are evenly distributed
in the sense that there is at the most one point per index on the
SFC from the mapping by 𝑓 . However, collisions will happen in
most cases. Additional computational costs can be introduced by
collision handling. The worst case happens if all points are initially
mapped by 𝑓 to the same SFC index. In this case, collision handling
will take as many steps as there are points already placed on the SFC.
When placing 𝑛 points subsequently, this will lead to an average of
𝑛/2 collision-handling steps per point, or 𝒪(𝑛2) steps to handle all
𝑛 points. In total, the runtime will therefore be 𝒪(𝑛 log𝑛 + 𝑛2) =
𝒪(𝑛2). The first term𝒪(𝑛 log𝑛) comes from the initial placement of

Algorithm 2: Solve collision.
function solveCollision(𝑝 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑝left = 𝑝 − 1
𝑝right = 𝑝 + 1
while No empty valid spot found do

𝑝left = 𝑝left − 1
𝑝right = 𝑝right + 1

// Empty spot found!

// Return closest valid SFC index.

return closestAndValid𝑥𝑖 ,𝑓 −1𝑙

(
𝑝left , 𝑝right

)

the points and the second term𝒪(𝑛2) deals with collision handling.
Therefore, the worst case runtime is governed by collision handling.

However, both extreme cases are not typical for our applications.
For in-between cases, it is critical to model the number of collision-
handling steps, depending on 𝑛. Let us assume that the function
𝑐 (𝑛) provides the average number of collision-handling steps. Then,
we arrive at a total runtime of 𝒪(𝑛 log𝑛 + 𝑐 (𝑛) · 𝑛), composed
of the initial placement of points and the subsequent handling of
collisions for all 𝑛 points. Of course, 𝑐 (𝑛) depends heavily on the
distribution of points in 2D and, therefore, cannot be discussed
here in full detail. We refer to generative data models [36] for some
approaches to model data with certain characteristics that could
be related to the properties relevant for collision handling. Even
without such a data model, we know that the number of collision
handling steps are bounded: 0 ≤ 𝑐 (𝑛) ≤ 𝑛, comprising the best
and worst case scenarios from above. While 𝑐 (𝑛) is a theoretical
model, Figure 5 shows the number of actual collisions for randomly
generated uniformly distributed datasets, as well as their impact on
runtime. Therefore, our runtime will then be between 𝒪(𝑛 log𝑛)
and 𝒪(𝑛2).

4 QUANTITATIVE ANALYSIS
In this section, we present a quantitative evaluation of Hagrid in
comparison to selected techniques.

4.1 Competing Techniques
We compare our technique with its two versions, Hilbert curve
(HagridHC) and Gosper curve (HagridGC), to three state-of-the-
art approaches: CMDS, DGrid, and SMWG. We selected these can-
didates based on two criteria: (i) how well they address our use
cases, and (ii) whether the techniques had not been previously com-
pared against each other. In previous evaluations against related
methods [11, 12, 39, 46], these approaches showed very convincing
results in terms of runtime and quality metrics.

All in all, the selected methods represent some of the best avail-
able techniques that address the problem of point positioning, and
more specifically, our scatterplot layout use case. A side contribu-
tion of this paper are the Python and JavaScript implementations
of the used techniques (except SMWG), as well as of the evaluation
metrics that will be presented in the next section.

(l) time, or — as l depends on
n (Equation 1) —
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in Equation 1 instead of 𝑛, where𝑤 is the percentage of whitespace.
For example, the level with guaranteed 50% whitespace is calculated
with 𝑙50% = ⌈log𝑚 (𝑛 · 1.5)⌉. Table 1 lists the maximum number of
cells available for different levels.

Table 1: The maximum number of points that can be en-
coded in an SFC of a particular level.

𝑙min 1 2 3 4 5 6 7

4 16 64 256 1024 4096 16384

7 49 343 2401 16807 117649 823543

The process of placing a point onto the SFC is similar to inserting
a value into a hash table. The recursion depth 𝑙 of the SFC depends
on the number of points in the scatterplot (see Equation 1), and
defines the required number of steps of the index computation of a
single point. The computation of an index assignment of one point
using (𝑓𝑙 ◦ 𝑔𝑙 ) : R2 → 𝐼𝑙 needs 𝒪(𝑙) time, or — as 𝑙 depends on
𝑛 (Equation 1) — 𝒪(log𝑛) time. For all points, the overall runtime
is thus 𝒪(𝑛 · 𝑙) = 𝒪(𝑛 log𝑛).

Algorithm 1: Gridify scatterplot.
Data: 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑋 is the set of the

datapoints that should get gridified
Input: The dataset 𝑋 , the mapping functions 𝑔𝑙 , 𝑓𝑙 and 𝑓 −1

𝑙
,

the depth of the space-filling curve 𝑙 ≥ 𝑙min.
Result: 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛}, the set of datapoints layed out

on the respective grid.
�̃� = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑥𝑖 = 𝑔𝑙 (𝑥𝑖 ), ∀𝑖 ∈ {1, . . . , 𝑛}
𝑃 = new Map ()
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑝𝑖 = 𝑓𝑙 (𝑥𝑖 )
// check for collision.

if 𝑃 .has (𝑝𝑖 ) then
𝑝𝑖 =solveCollision(𝑝𝑖 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑃 .set (𝑝𝑖 , 𝑖)
// remap to 2D coordinates.

𝑌 = new Array(𝑛)
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑦𝑖 = 𝑓 −1
𝑙

(𝑝𝑖 )
return Y

The above considerations are valid as long as there is no collision
on the SFC. This best case occurs if the points are evenly distributed
in the sense that there is at the most one point per index on the
SFC from the mapping by 𝑓 . However, collisions will happen in
most cases. Additional computational costs can be introduced by
collision handling. The worst case happens if all points are initially
mapped by 𝑓 to the same SFC index. In this case, collision handling
will take as many steps as there are points already placed on the SFC.
When placing 𝑛 points subsequently, this will lead to an average of
𝑛/2 collision-handling steps per point, or 𝒪(𝑛2) steps to handle all
𝑛 points. In total, the runtime will therefore be 𝒪(𝑛 log𝑛 + 𝑛2) =
𝒪(𝑛2). The first term𝒪(𝑛 log𝑛) comes from the initial placement of

Algorithm 2: Solve collision.
function solveCollision(𝑝 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑝left = 𝑝 − 1
𝑝right = 𝑝 + 1
while No empty valid spot found do

𝑝left = 𝑝left − 1
𝑝right = 𝑝right + 1

// Empty spot found!

// Return closest valid SFC index.

return closestAndValid𝑥𝑖 ,𝑓 −1𝑙

(
𝑝left , 𝑝right

)

the points and the second term𝒪(𝑛2) deals with collision handling.
Therefore, the worst case runtime is governed by collision handling.

However, both extreme cases are not typical for our applications.
For in-between cases, it is critical to model the number of collision-
handling steps, depending on 𝑛. Let us assume that the function
𝑐 (𝑛) provides the average number of collision-handling steps. Then,
we arrive at a total runtime of 𝒪(𝑛 log𝑛 + 𝑐 (𝑛) · 𝑛), composed
of the initial placement of points and the subsequent handling of
collisions for all 𝑛 points. Of course, 𝑐 (𝑛) depends heavily on the
distribution of points in 2D and, therefore, cannot be discussed
here in full detail. We refer to generative data models [36] for some
approaches to model data with certain characteristics that could
be related to the properties relevant for collision handling. Even
without such a data model, we know that the number of collision
handling steps are bounded: 0 ≤ 𝑐 (𝑛) ≤ 𝑛, comprising the best
and worst case scenarios from above. While 𝑐 (𝑛) is a theoretical
model, Figure 5 shows the number of actual collisions for randomly
generated uniformly distributed datasets, as well as their impact on
runtime. Therefore, our runtime will then be between 𝒪(𝑛 log𝑛)
and 𝒪(𝑛2).

4 QUANTITATIVE ANALYSIS
In this section, we present a quantitative evaluation of Hagrid in
comparison to selected techniques.

4.1 Competing Techniques
We compare our technique with its two versions, Hilbert curve
(HagridHC) and Gosper curve (HagridGC), to three state-of-the-
art approaches: CMDS, DGrid, and SMWG. We selected these can-
didates based on two criteria: (i) how well they address our use
cases, and (ii) whether the techniques had not been previously com-
pared against each other. In previous evaluations against related
methods [11, 12, 39, 46], these approaches showed very convincing
results in terms of runtime and quality metrics.

All in all, the selected methods represent some of the best avail-
able techniques that address the problem of point positioning, and
more specifically, our scatterplot layout use case. A side contribu-
tion of this paper are the Python and JavaScript implementations
of the used techniques (except SMWG), as well as of the evaluation
metrics that will be presented in the next section.

(logn) time. For all points, the overall runtime
is thus
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in Equation 1 instead of 𝑛, where𝑤 is the percentage of whitespace.
For example, the level with guaranteed 50% whitespace is calculated
with 𝑙50% = ⌈log𝑚 (𝑛 · 1.5)⌉. Table 1 lists the maximum number of
cells available for different levels.

Table 1: The maximum number of points that can be en-
coded in an SFC of a particular level.

𝑙min 1 2 3 4 5 6 7

4 16 64 256 1024 4096 16384

7 49 343 2401 16807 117649 823543

The process of placing a point onto the SFC is similar to inserting
a value into a hash table. The recursion depth 𝑙 of the SFC depends
on the number of points in the scatterplot (see Equation 1), and
defines the required number of steps of the index computation of a
single point. The computation of an index assignment of one point
using (𝑓𝑙 ◦ 𝑔𝑙 ) : R2 → 𝐼𝑙 needs 𝒪(𝑙) time, or — as 𝑙 depends on
𝑛 (Equation 1) — 𝒪(log𝑛) time. For all points, the overall runtime
is thus 𝒪(𝑛 · 𝑙) = 𝒪(𝑛 log𝑛).

Algorithm 1: Gridify scatterplot.
Data: 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑋 is the set of the

datapoints that should get gridified
Input: The dataset 𝑋 , the mapping functions 𝑔𝑙 , 𝑓𝑙 and 𝑓 −1

𝑙
,

the depth of the space-filling curve 𝑙 ≥ 𝑙min.
Result: 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛}, the set of datapoints layed out

on the respective grid.
�̃� = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑥𝑖 = 𝑔𝑙 (𝑥𝑖 ), ∀𝑖 ∈ {1, . . . , 𝑛}
𝑃 = new Map ()
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑝𝑖 = 𝑓𝑙 (𝑥𝑖 )
// check for collision.

if 𝑃 .has (𝑝𝑖 ) then
𝑝𝑖 =solveCollision(𝑝𝑖 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑃 .set (𝑝𝑖 , 𝑖)
// remap to 2D coordinates.

𝑌 = new Array(𝑛)
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑦𝑖 = 𝑓 −1
𝑙

(𝑝𝑖 )
return Y

The above considerations are valid as long as there is no collision
on the SFC. This best case occurs if the points are evenly distributed
in the sense that there is at the most one point per index on the
SFC from the mapping by 𝑓 . However, collisions will happen in
most cases. Additional computational costs can be introduced by
collision handling. The worst case happens if all points are initially
mapped by 𝑓 to the same SFC index. In this case, collision handling
will take as many steps as there are points already placed on the SFC.
When placing 𝑛 points subsequently, this will lead to an average of
𝑛/2 collision-handling steps per point, or 𝒪(𝑛2) steps to handle all
𝑛 points. In total, the runtime will therefore be 𝒪(𝑛 log𝑛 + 𝑛2) =
𝒪(𝑛2). The first term𝒪(𝑛 log𝑛) comes from the initial placement of

Algorithm 2: Solve collision.
function solveCollision(𝑝 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑝left = 𝑝 − 1
𝑝right = 𝑝 + 1
while No empty valid spot found do

𝑝left = 𝑝left − 1
𝑝right = 𝑝right + 1

// Empty spot found!

// Return closest valid SFC index.

return closestAndValid𝑥𝑖 ,𝑓 −1𝑙

(
𝑝left , 𝑝right

)

the points and the second term𝒪(𝑛2) deals with collision handling.
Therefore, the worst case runtime is governed by collision handling.

However, both extreme cases are not typical for our applications.
For in-between cases, it is critical to model the number of collision-
handling steps, depending on 𝑛. Let us assume that the function
𝑐 (𝑛) provides the average number of collision-handling steps. Then,
we arrive at a total runtime of 𝒪(𝑛 log𝑛 + 𝑐 (𝑛) · 𝑛), composed
of the initial placement of points and the subsequent handling of
collisions for all 𝑛 points. Of course, 𝑐 (𝑛) depends heavily on the
distribution of points in 2D and, therefore, cannot be discussed
here in full detail. We refer to generative data models [36] for some
approaches to model data with certain characteristics that could
be related to the properties relevant for collision handling. Even
without such a data model, we know that the number of collision
handling steps are bounded: 0 ≤ 𝑐 (𝑛) ≤ 𝑛, comprising the best
and worst case scenarios from above. While 𝑐 (𝑛) is a theoretical
model, Figure 5 shows the number of actual collisions for randomly
generated uniformly distributed datasets, as well as their impact on
runtime. Therefore, our runtime will then be between 𝒪(𝑛 log𝑛)
and 𝒪(𝑛2).

4 QUANTITATIVE ANALYSIS
In this section, we present a quantitative evaluation of Hagrid in
comparison to selected techniques.

4.1 Competing Techniques
We compare our technique with its two versions, Hilbert curve
(HagridHC) and Gosper curve (HagridGC), to three state-of-the-
art approaches: CMDS, DGrid, and SMWG. We selected these can-
didates based on two criteria: (i) how well they address our use
cases, and (ii) whether the techniques had not been previously com-
pared against each other. In previous evaluations against related
methods [11, 12, 39, 46], these approaches showed very convincing
results in terms of runtime and quality metrics.

All in all, the selected methods represent some of the best avail-
able techniques that address the problem of point positioning, and
more specifically, our scatterplot layout use case. A side contribu-
tion of this paper are the Python and JavaScript implementations
of the used techniques (except SMWG), as well as of the evaluation
metrics that will be presented in the next section.

(n · l) =
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in Equation 1 instead of 𝑛, where𝑤 is the percentage of whitespace.
For example, the level with guaranteed 50% whitespace is calculated
with 𝑙50% = ⌈log𝑚 (𝑛 · 1.5)⌉. Table 1 lists the maximum number of
cells available for different levels.

Table 1: The maximum number of points that can be en-
coded in an SFC of a particular level.

𝑙min 1 2 3 4 5 6 7

4 16 64 256 1024 4096 16384

7 49 343 2401 16807 117649 823543

The process of placing a point onto the SFC is similar to inserting
a value into a hash table. The recursion depth 𝑙 of the SFC depends
on the number of points in the scatterplot (see Equation 1), and
defines the required number of steps of the index computation of a
single point. The computation of an index assignment of one point
using (𝑓𝑙 ◦ 𝑔𝑙 ) : R2 → 𝐼𝑙 needs 𝒪(𝑙) time, or — as 𝑙 depends on
𝑛 (Equation 1) — 𝒪(log𝑛) time. For all points, the overall runtime
is thus 𝒪(𝑛 · 𝑙) = 𝒪(𝑛 log𝑛).

Algorithm 1: Gridify scatterplot.
Data: 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑋 is the set of the

datapoints that should get gridified
Input: The dataset 𝑋 , the mapping functions 𝑔𝑙 , 𝑓𝑙 and 𝑓 −1

𝑙
,

the depth of the space-filling curve 𝑙 ≥ 𝑙min.
Result: 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛}, the set of datapoints layed out

on the respective grid.
�̃� = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑥𝑖 = 𝑔𝑙 (𝑥𝑖 ), ∀𝑖 ∈ {1, . . . , 𝑛}
𝑃 = new Map ()
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑝𝑖 = 𝑓𝑙 (𝑥𝑖 )
// check for collision.

if 𝑃 .has (𝑝𝑖 ) then
𝑝𝑖 =solveCollision(𝑝𝑖 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑃 .set (𝑝𝑖 , 𝑖)
// remap to 2D coordinates.

𝑌 = new Array(𝑛)
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑦𝑖 = 𝑓 −1
𝑙

(𝑝𝑖 )
return Y

The above considerations are valid as long as there is no collision
on the SFC. This best case occurs if the points are evenly distributed
in the sense that there is at the most one point per index on the
SFC from the mapping by 𝑓 . However, collisions will happen in
most cases. Additional computational costs can be introduced by
collision handling. The worst case happens if all points are initially
mapped by 𝑓 to the same SFC index. In this case, collision handling
will take as many steps as there are points already placed on the SFC.
When placing 𝑛 points subsequently, this will lead to an average of
𝑛/2 collision-handling steps per point, or 𝒪(𝑛2) steps to handle all
𝑛 points. In total, the runtime will therefore be 𝒪(𝑛 log𝑛 + 𝑛2) =
𝒪(𝑛2). The first term𝒪(𝑛 log𝑛) comes from the initial placement of

Algorithm 2: Solve collision.
function solveCollision(𝑝 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑝left = 𝑝 − 1
𝑝right = 𝑝 + 1
while No empty valid spot found do

𝑝left = 𝑝left − 1
𝑝right = 𝑝right + 1

// Empty spot found!

// Return closest valid SFC index.

return closestAndValid𝑥𝑖 ,𝑓 −1𝑙

(
𝑝left , 𝑝right

)

the points and the second term𝒪(𝑛2) deals with collision handling.
Therefore, the worst case runtime is governed by collision handling.

However, both extreme cases are not typical for our applications.
For in-between cases, it is critical to model the number of collision-
handling steps, depending on 𝑛. Let us assume that the function
𝑐 (𝑛) provides the average number of collision-handling steps. Then,
we arrive at a total runtime of 𝒪(𝑛 log𝑛 + 𝑐 (𝑛) · 𝑛), composed
of the initial placement of points and the subsequent handling of
collisions for all 𝑛 points. Of course, 𝑐 (𝑛) depends heavily on the
distribution of points in 2D and, therefore, cannot be discussed
here in full detail. We refer to generative data models [36] for some
approaches to model data with certain characteristics that could
be related to the properties relevant for collision handling. Even
without such a data model, we know that the number of collision
handling steps are bounded: 0 ≤ 𝑐 (𝑛) ≤ 𝑛, comprising the best
and worst case scenarios from above. While 𝑐 (𝑛) is a theoretical
model, Figure 5 shows the number of actual collisions for randomly
generated uniformly distributed datasets, as well as their impact on
runtime. Therefore, our runtime will then be between 𝒪(𝑛 log𝑛)
and 𝒪(𝑛2).

4 QUANTITATIVE ANALYSIS
In this section, we present a quantitative evaluation of Hagrid in
comparison to selected techniques.

4.1 Competing Techniques
We compare our technique with its two versions, Hilbert curve
(HagridHC) and Gosper curve (HagridGC), to three state-of-the-
art approaches: CMDS, DGrid, and SMWG. We selected these can-
didates based on two criteria: (i) how well they address our use
cases, and (ii) whether the techniques had not been previously com-
pared against each other. In previous evaluations against related
methods [11, 12, 39, 46], these approaches showed very convincing
results in terms of runtime and quality metrics.

All in all, the selected methods represent some of the best avail-
able techniques that address the problem of point positioning, and
more specifically, our scatterplot layout use case. A side contribu-
tion of this paper are the Python and JavaScript implementations
of the used techniques (except SMWG), as well as of the evaluation
metrics that will be presented in the next section.

(n logn).
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in Equation 1 instead of 𝑛, where𝑤 is the percentage of whitespace.
For example, the level with guaranteed 50% whitespace is calculated
with 𝑙50% = ⌈log𝑚 (𝑛 · 1.5)⌉. Table 1 lists the maximum number of
cells available for different levels.

Table 1: The maximum number of points that can be en-
coded in an SFC of a particular level.

𝑙min 1 2 3 4 5 6 7

4 16 64 256 1024 4096 16384

7 49 343 2401 16807 117649 823543

The process of placing a point onto the SFC is similar to inserting
a value into a hash table. The recursion depth 𝑙 of the SFC depends
on the number of points in the scatterplot (see Equation 1), and
defines the required number of steps of the index computation of a
single point. The computation of an index assignment of one point
using (𝑓𝑙 ◦ 𝑔𝑙 ) : R2 → 𝐼𝑙 needs 𝒪(𝑙) time, or — as 𝑙 depends on
𝑛 (Equation 1) — 𝒪(log𝑛) time. For all points, the overall runtime
is thus 𝒪(𝑛 · 𝑙) = 𝒪(𝑛 log𝑛).

Algorithm 1: Gridify scatterplot.
Data: 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑋 is the set of the

datapoints that should get gridified
Input: The dataset 𝑋 , the mapping functions 𝑔𝑙 , 𝑓𝑙 and 𝑓 −1

𝑙
,

the depth of the space-filling curve 𝑙 ≥ 𝑙min.
Result: 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛}, the set of datapoints layed out

on the respective grid.
�̃� = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑥𝑖 = 𝑔𝑙 (𝑥𝑖 ), ∀𝑖 ∈ {1, . . . , 𝑛}
𝑃 = new Map ()
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑝𝑖 = 𝑓𝑙 (𝑥𝑖 )
// check for collision.

if 𝑃 .has (𝑝𝑖 ) then
𝑝𝑖 =solveCollision(𝑝𝑖 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑃 .set (𝑝𝑖 , 𝑖)
// remap to 2D coordinates.

𝑌 = new Array(𝑛)
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑦𝑖 = 𝑓 −1
𝑙

(𝑝𝑖 )
return Y

The above considerations are valid as long as there is no collision
on the SFC. This best case occurs if the points are evenly distributed
in the sense that there is at the most one point per index on the
SFC from the mapping by 𝑓 . However, collisions will happen in
most cases. Additional computational costs can be introduced by
collision handling. The worst case happens if all points are initially
mapped by 𝑓 to the same SFC index. In this case, collision handling
will take as many steps as there are points already placed on the SFC.
When placing 𝑛 points subsequently, this will lead to an average of
𝑛/2 collision-handling steps per point, or 𝒪(𝑛2) steps to handle all
𝑛 points. In total, the runtime will therefore be 𝒪(𝑛 log𝑛 + 𝑛2) =
𝒪(𝑛2). The first term𝒪(𝑛 log𝑛) comes from the initial placement of

Algorithm 2: Solve collision.
function solveCollision(𝑝 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑝left = 𝑝 − 1
𝑝right = 𝑝 + 1
while No empty valid spot found do

𝑝left = 𝑝left − 1
𝑝right = 𝑝right + 1

// Empty spot found!

// Return closest valid SFC index.

return closestAndValid𝑥𝑖 ,𝑓 −1𝑙

(
𝑝left , 𝑝right

)

the points and the second term𝒪(𝑛2) deals with collision handling.
Therefore, the worst case runtime is governed by collision handling.

However, both extreme cases are not typical for our applications.
For in-between cases, it is critical to model the number of collision-
handling steps, depending on 𝑛. Let us assume that the function
𝑐 (𝑛) provides the average number of collision-handling steps. Then,
we arrive at a total runtime of 𝒪(𝑛 log𝑛 + 𝑐 (𝑛) · 𝑛), composed
of the initial placement of points and the subsequent handling of
collisions for all 𝑛 points. Of course, 𝑐 (𝑛) depends heavily on the
distribution of points in 2D and, therefore, cannot be discussed
here in full detail. We refer to generative data models [36] for some
approaches to model data with certain characteristics that could
be related to the properties relevant for collision handling. Even
without such a data model, we know that the number of collision
handling steps are bounded: 0 ≤ 𝑐 (𝑛) ≤ 𝑛, comprising the best
and worst case scenarios from above. While 𝑐 (𝑛) is a theoretical
model, Figure 5 shows the number of actual collisions for randomly
generated uniformly distributed datasets, as well as their impact on
runtime. Therefore, our runtime will then be between 𝒪(𝑛 log𝑛)
and 𝒪(𝑛2).

4 QUANTITATIVE ANALYSIS
In this section, we present a quantitative evaluation of Hagrid in
comparison to selected techniques.

4.1 Competing Techniques
We compare our technique with its two versions, Hilbert curve
(HagridHC) and Gosper curve (HagridGC), to three state-of-the-
art approaches: CMDS, DGrid, and SMWG. We selected these can-
didates based on two criteria: (i) how well they address our use
cases, and (ii) whether the techniques had not been previously com-
pared against each other. In previous evaluations against related
methods [11, 12, 39, 46], these approaches showed very convincing
results in terms of runtime and quality metrics.

All in all, the selected methods represent some of the best avail-
able techniques that address the problem of point positioning, and
more specifically, our scatterplot layout use case. A side contribu-
tion of this paper are the Python and JavaScript implementations
of the used techniques (except SMWG), as well as of the evaluation
metrics that will be presented in the next section.

The above considerations are valid as long as there is no collision
on the SFC. This best case occurs if the points are evenly distributed
in the sense that there is at the most one point per index on the
SFC from the mapping by f . However, collisions will happen in
most cases. Additional computational costs can be introduced by
collision handling. The worst case happens if all points are initially
mapped by f to the same SFC index. In this case, collision handling
will take as many steps as there are points already placed on the SFC.
When placing n points subsequently, this will lead to an average of
n/2 collision-handling steps per point, or
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in Equation 1 instead of 𝑛, where𝑤 is the percentage of whitespace.
For example, the level with guaranteed 50% whitespace is calculated
with 𝑙50% = ⌈log𝑚 (𝑛 · 1.5)⌉. Table 1 lists the maximum number of
cells available for different levels.

Table 1: The maximum number of points that can be en-
coded in an SFC of a particular level.

𝑙min 1 2 3 4 5 6 7

4 16 64 256 1024 4096 16384

7 49 343 2401 16807 117649 823543

The process of placing a point onto the SFC is similar to inserting
a value into a hash table. The recursion depth 𝑙 of the SFC depends
on the number of points in the scatterplot (see Equation 1), and
defines the required number of steps of the index computation of a
single point. The computation of an index assignment of one point
using (𝑓𝑙 ◦ 𝑔𝑙 ) : R2 → 𝐼𝑙 needs 𝒪(𝑙) time, or — as 𝑙 depends on
𝑛 (Equation 1) — 𝒪(log𝑛) time. For all points, the overall runtime
is thus 𝒪(𝑛 · 𝑙) = 𝒪(𝑛 log𝑛).

Algorithm 1: Gridify scatterplot.
Data: 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑋 is the set of the

datapoints that should get gridified
Input: The dataset 𝑋 , the mapping functions 𝑔𝑙 , 𝑓𝑙 and 𝑓 −1

𝑙
,

the depth of the space-filling curve 𝑙 ≥ 𝑙min.
Result: 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛}, the set of datapoints layed out

on the respective grid.
�̃� = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑥𝑖 = 𝑔𝑙 (𝑥𝑖 ), ∀𝑖 ∈ {1, . . . , 𝑛}
𝑃 = new Map ()
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑝𝑖 = 𝑓𝑙 (𝑥𝑖 )
// check for collision.

if 𝑃 .has (𝑝𝑖 ) then
𝑝𝑖 =solveCollision(𝑝𝑖 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑃 .set (𝑝𝑖 , 𝑖)
// remap to 2D coordinates.

𝑌 = new Array(𝑛)
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑦𝑖 = 𝑓 −1
𝑙

(𝑝𝑖 )
return Y

The above considerations are valid as long as there is no collision
on the SFC. This best case occurs if the points are evenly distributed
in the sense that there is at the most one point per index on the
SFC from the mapping by 𝑓 . However, collisions will happen in
most cases. Additional computational costs can be introduced by
collision handling. The worst case happens if all points are initially
mapped by 𝑓 to the same SFC index. In this case, collision handling
will take as many steps as there are points already placed on the SFC.
When placing 𝑛 points subsequently, this will lead to an average of
𝑛/2 collision-handling steps per point, or 𝒪(𝑛2) steps to handle all
𝑛 points. In total, the runtime will therefore be 𝒪(𝑛 log𝑛 + 𝑛2) =
𝒪(𝑛2). The first term𝒪(𝑛 log𝑛) comes from the initial placement of

Algorithm 2: Solve collision.
function solveCollision(𝑝 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑝left = 𝑝 − 1
𝑝right = 𝑝 + 1
while No empty valid spot found do

𝑝left = 𝑝left − 1
𝑝right = 𝑝right + 1

// Empty spot found!

// Return closest valid SFC index.

return closestAndValid𝑥𝑖 ,𝑓 −1𝑙

(
𝑝left , 𝑝right

)

the points and the second term𝒪(𝑛2) deals with collision handling.
Therefore, the worst case runtime is governed by collision handling.

However, both extreme cases are not typical for our applications.
For in-between cases, it is critical to model the number of collision-
handling steps, depending on 𝑛. Let us assume that the function
𝑐 (𝑛) provides the average number of collision-handling steps. Then,
we arrive at a total runtime of 𝒪(𝑛 log𝑛 + 𝑐 (𝑛) · 𝑛), composed
of the initial placement of points and the subsequent handling of
collisions for all 𝑛 points. Of course, 𝑐 (𝑛) depends heavily on the
distribution of points in 2D and, therefore, cannot be discussed
here in full detail. We refer to generative data models [36] for some
approaches to model data with certain characteristics that could
be related to the properties relevant for collision handling. Even
without such a data model, we know that the number of collision
handling steps are bounded: 0 ≤ 𝑐 (𝑛) ≤ 𝑛, comprising the best
and worst case scenarios from above. While 𝑐 (𝑛) is a theoretical
model, Figure 5 shows the number of actual collisions for randomly
generated uniformly distributed datasets, as well as their impact on
runtime. Therefore, our runtime will then be between 𝒪(𝑛 log𝑛)
and 𝒪(𝑛2).

4 QUANTITATIVE ANALYSIS
In this section, we present a quantitative evaluation of Hagrid in
comparison to selected techniques.

4.1 Competing Techniques
We compare our technique with its two versions, Hilbert curve
(HagridHC) and Gosper curve (HagridGC), to three state-of-the-
art approaches: CMDS, DGrid, and SMWG. We selected these can-
didates based on two criteria: (i) how well they address our use
cases, and (ii) whether the techniques had not been previously com-
pared against each other. In previous evaluations against related
methods [11, 12, 39, 46], these approaches showed very convincing
results in terms of runtime and quality metrics.

All in all, the selected methods represent some of the best avail-
able techniques that address the problem of point positioning, and
more specifically, our scatterplot layout use case. A side contribu-
tion of this paper are the Python and JavaScript implementations
of the used techniques (except SMWG), as well as of the evaluation
metrics that will be presented in the next section.

(n2) steps to handle all
n points. In total, the runtime will therefore be
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in Equation 1 instead of 𝑛, where𝑤 is the percentage of whitespace.
For example, the level with guaranteed 50% whitespace is calculated
with 𝑙50% = ⌈log𝑚 (𝑛 · 1.5)⌉. Table 1 lists the maximum number of
cells available for different levels.

Table 1: The maximum number of points that can be en-
coded in an SFC of a particular level.

𝑙min 1 2 3 4 5 6 7

4 16 64 256 1024 4096 16384

7 49 343 2401 16807 117649 823543

The process of placing a point onto the SFC is similar to inserting
a value into a hash table. The recursion depth 𝑙 of the SFC depends
on the number of points in the scatterplot (see Equation 1), and
defines the required number of steps of the index computation of a
single point. The computation of an index assignment of one point
using (𝑓𝑙 ◦ 𝑔𝑙 ) : R2 → 𝐼𝑙 needs 𝒪(𝑙) time, or — as 𝑙 depends on
𝑛 (Equation 1) — 𝒪(log𝑛) time. For all points, the overall runtime
is thus 𝒪(𝑛 · 𝑙) = 𝒪(𝑛 log𝑛).

Algorithm 1: Gridify scatterplot.
Data: 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑋 is the set of the

datapoints that should get gridified
Input: The dataset 𝑋 , the mapping functions 𝑔𝑙 , 𝑓𝑙 and 𝑓 −1

𝑙
,

the depth of the space-filling curve 𝑙 ≥ 𝑙min.
Result: 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛}, the set of datapoints layed out

on the respective grid.
�̃� = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑥𝑖 = 𝑔𝑙 (𝑥𝑖 ), ∀𝑖 ∈ {1, . . . , 𝑛}
𝑃 = new Map ()
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑝𝑖 = 𝑓𝑙 (𝑥𝑖 )
// check for collision.

if 𝑃 .has (𝑝𝑖 ) then
𝑝𝑖 =solveCollision(𝑝𝑖 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑃 .set (𝑝𝑖 , 𝑖)
// remap to 2D coordinates.

𝑌 = new Array(𝑛)
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑦𝑖 = 𝑓 −1
𝑙

(𝑝𝑖 )
return Y

The above considerations are valid as long as there is no collision
on the SFC. This best case occurs if the points are evenly distributed
in the sense that there is at the most one point per index on the
SFC from the mapping by 𝑓 . However, collisions will happen in
most cases. Additional computational costs can be introduced by
collision handling. The worst case happens if all points are initially
mapped by 𝑓 to the same SFC index. In this case, collision handling
will take as many steps as there are points already placed on the SFC.
When placing 𝑛 points subsequently, this will lead to an average of
𝑛/2 collision-handling steps per point, or 𝒪(𝑛2) steps to handle all
𝑛 points. In total, the runtime will therefore be 𝒪(𝑛 log𝑛 + 𝑛2) =
𝒪(𝑛2). The first term𝒪(𝑛 log𝑛) comes from the initial placement of

Algorithm 2: Solve collision.
function solveCollision(𝑝 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑝left = 𝑝 − 1
𝑝right = 𝑝 + 1
while No empty valid spot found do

𝑝left = 𝑝left − 1
𝑝right = 𝑝right + 1

// Empty spot found!

// Return closest valid SFC index.

return closestAndValid𝑥𝑖 ,𝑓 −1𝑙

(
𝑝left , 𝑝right

)

the points and the second term𝒪(𝑛2) deals with collision handling.
Therefore, the worst case runtime is governed by collision handling.

However, both extreme cases are not typical for our applications.
For in-between cases, it is critical to model the number of collision-
handling steps, depending on 𝑛. Let us assume that the function
𝑐 (𝑛) provides the average number of collision-handling steps. Then,
we arrive at a total runtime of 𝒪(𝑛 log𝑛 + 𝑐 (𝑛) · 𝑛), composed
of the initial placement of points and the subsequent handling of
collisions for all 𝑛 points. Of course, 𝑐 (𝑛) depends heavily on the
distribution of points in 2D and, therefore, cannot be discussed
here in full detail. We refer to generative data models [36] for some
approaches to model data with certain characteristics that could
be related to the properties relevant for collision handling. Even
without such a data model, we know that the number of collision
handling steps are bounded: 0 ≤ 𝑐 (𝑛) ≤ 𝑛, comprising the best
and worst case scenarios from above. While 𝑐 (𝑛) is a theoretical
model, Figure 5 shows the number of actual collisions for randomly
generated uniformly distributed datasets, as well as their impact on
runtime. Therefore, our runtime will then be between 𝒪(𝑛 log𝑛)
and 𝒪(𝑛2).

4 QUANTITATIVE ANALYSIS
In this section, we present a quantitative evaluation of Hagrid in
comparison to selected techniques.

4.1 Competing Techniques
We compare our technique with its two versions, Hilbert curve
(HagridHC) and Gosper curve (HagridGC), to three state-of-the-
art approaches: CMDS, DGrid, and SMWG. We selected these can-
didates based on two criteria: (i) how well they address our use
cases, and (ii) whether the techniques had not been previously com-
pared against each other. In previous evaluations against related
methods [11, 12, 39, 46], these approaches showed very convincing
results in terms of runtime and quality metrics.

All in all, the selected methods represent some of the best avail-
able techniques that address the problem of point positioning, and
more specifically, our scatterplot layout use case. A side contribu-
tion of this paper are the Python and JavaScript implementations
of the used techniques (except SMWG), as well as of the evaluation
metrics that will be presented in the next section.

(n logn + n2) =
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in Equation 1 instead of 𝑛, where𝑤 is the percentage of whitespace.
For example, the level with guaranteed 50% whitespace is calculated
with 𝑙50% = ⌈log𝑚 (𝑛 · 1.5)⌉. Table 1 lists the maximum number of
cells available for different levels.

Table 1: The maximum number of points that can be en-
coded in an SFC of a particular level.

𝑙min 1 2 3 4 5 6 7

4 16 64 256 1024 4096 16384

7 49 343 2401 16807 117649 823543

The process of placing a point onto the SFC is similar to inserting
a value into a hash table. The recursion depth 𝑙 of the SFC depends
on the number of points in the scatterplot (see Equation 1), and
defines the required number of steps of the index computation of a
single point. The computation of an index assignment of one point
using (𝑓𝑙 ◦ 𝑔𝑙 ) : R2 → 𝐼𝑙 needs 𝒪(𝑙) time, or — as 𝑙 depends on
𝑛 (Equation 1) — 𝒪(log𝑛) time. For all points, the overall runtime
is thus 𝒪(𝑛 · 𝑙) = 𝒪(𝑛 log𝑛).

Algorithm 1: Gridify scatterplot.
Data: 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑋 is the set of the

datapoints that should get gridified
Input: The dataset 𝑋 , the mapping functions 𝑔𝑙 , 𝑓𝑙 and 𝑓 −1

𝑙
,

the depth of the space-filling curve 𝑙 ≥ 𝑙min.
Result: 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛}, the set of datapoints layed out

on the respective grid.
�̃� = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑥𝑖 = 𝑔𝑙 (𝑥𝑖 ), ∀𝑖 ∈ {1, . . . , 𝑛}
𝑃 = new Map ()
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑝𝑖 = 𝑓𝑙 (𝑥𝑖 )
// check for collision.

if 𝑃 .has (𝑝𝑖 ) then
𝑝𝑖 =solveCollision(𝑝𝑖 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑃 .set (𝑝𝑖 , 𝑖)
// remap to 2D coordinates.

𝑌 = new Array(𝑛)
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑦𝑖 = 𝑓 −1
𝑙

(𝑝𝑖 )
return Y

The above considerations are valid as long as there is no collision
on the SFC. This best case occurs if the points are evenly distributed
in the sense that there is at the most one point per index on the
SFC from the mapping by 𝑓 . However, collisions will happen in
most cases. Additional computational costs can be introduced by
collision handling. The worst case happens if all points are initially
mapped by 𝑓 to the same SFC index. In this case, collision handling
will take as many steps as there are points already placed on the SFC.
When placing 𝑛 points subsequently, this will lead to an average of
𝑛/2 collision-handling steps per point, or 𝒪(𝑛2) steps to handle all
𝑛 points. In total, the runtime will therefore be 𝒪(𝑛 log𝑛 + 𝑛2) =
𝒪(𝑛2). The first term𝒪(𝑛 log𝑛) comes from the initial placement of

Algorithm 2: Solve collision.
function solveCollision(𝑝 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑝left = 𝑝 − 1
𝑝right = 𝑝 + 1
while No empty valid spot found do

𝑝left = 𝑝left − 1
𝑝right = 𝑝right + 1

// Empty spot found!

// Return closest valid SFC index.

return closestAndValid𝑥𝑖 ,𝑓 −1𝑙

(
𝑝left , 𝑝right

)

the points and the second term𝒪(𝑛2) deals with collision handling.
Therefore, the worst case runtime is governed by collision handling.

However, both extreme cases are not typical for our applications.
For in-between cases, it is critical to model the number of collision-
handling steps, depending on 𝑛. Let us assume that the function
𝑐 (𝑛) provides the average number of collision-handling steps. Then,
we arrive at a total runtime of 𝒪(𝑛 log𝑛 + 𝑐 (𝑛) · 𝑛), composed
of the initial placement of points and the subsequent handling of
collisions for all 𝑛 points. Of course, 𝑐 (𝑛) depends heavily on the
distribution of points in 2D and, therefore, cannot be discussed
here in full detail. We refer to generative data models [36] for some
approaches to model data with certain characteristics that could
be related to the properties relevant for collision handling. Even
without such a data model, we know that the number of collision
handling steps are bounded: 0 ≤ 𝑐 (𝑛) ≤ 𝑛, comprising the best
and worst case scenarios from above. While 𝑐 (𝑛) is a theoretical
model, Figure 5 shows the number of actual collisions for randomly
generated uniformly distributed datasets, as well as their impact on
runtime. Therefore, our runtime will then be between 𝒪(𝑛 log𝑛)
and 𝒪(𝑛2).

4 QUANTITATIVE ANALYSIS
In this section, we present a quantitative evaluation of Hagrid in
comparison to selected techniques.

4.1 Competing Techniques
We compare our technique with its two versions, Hilbert curve
(HagridHC) and Gosper curve (HagridGC), to three state-of-the-
art approaches: CMDS, DGrid, and SMWG. We selected these can-
didates based on two criteria: (i) how well they address our use
cases, and (ii) whether the techniques had not been previously com-
pared against each other. In previous evaluations against related
methods [11, 12, 39, 46], these approaches showed very convincing
results in terms of runtime and quality metrics.

All in all, the selected methods represent some of the best avail-
able techniques that address the problem of point positioning, and
more specifically, our scatterplot layout use case. A side contribu-
tion of this paper are the Python and JavaScript implementations
of the used techniques (except SMWG), as well as of the evaluation
metrics that will be presented in the next section.

(n2). The first term
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in Equation 1 instead of 𝑛, where𝑤 is the percentage of whitespace.
For example, the level with guaranteed 50% whitespace is calculated
with 𝑙50% = ⌈log𝑚 (𝑛 · 1.5)⌉. Table 1 lists the maximum number of
cells available for different levels.

Table 1: The maximum number of points that can be en-
coded in an SFC of a particular level.

𝑙min 1 2 3 4 5 6 7

4 16 64 256 1024 4096 16384

7 49 343 2401 16807 117649 823543

The process of placing a point onto the SFC is similar to inserting
a value into a hash table. The recursion depth 𝑙 of the SFC depends
on the number of points in the scatterplot (see Equation 1), and
defines the required number of steps of the index computation of a
single point. The computation of an index assignment of one point
using (𝑓𝑙 ◦ 𝑔𝑙 ) : R2 → 𝐼𝑙 needs 𝒪(𝑙) time, or — as 𝑙 depends on
𝑛 (Equation 1) — 𝒪(log𝑛) time. For all points, the overall runtime
is thus 𝒪(𝑛 · 𝑙) = 𝒪(𝑛 log𝑛).

Algorithm 1: Gridify scatterplot.
Data: 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑋 is the set of the

datapoints that should get gridified
Input: The dataset 𝑋 , the mapping functions 𝑔𝑙 , 𝑓𝑙 and 𝑓 −1

𝑙
,

the depth of the space-filling curve 𝑙 ≥ 𝑙min.
Result: 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛}, the set of datapoints layed out

on the respective grid.
�̃� = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑥𝑖 = 𝑔𝑙 (𝑥𝑖 ), ∀𝑖 ∈ {1, . . . , 𝑛}
𝑃 = new Map ()
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑝𝑖 = 𝑓𝑙 (𝑥𝑖 )
// check for collision.

if 𝑃 .has (𝑝𝑖 ) then
𝑝𝑖 =solveCollision(𝑝𝑖 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑃 .set (𝑝𝑖 , 𝑖)
// remap to 2D coordinates.

𝑌 = new Array(𝑛)
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑦𝑖 = 𝑓 −1
𝑙

(𝑝𝑖 )
return Y

The above considerations are valid as long as there is no collision
on the SFC. This best case occurs if the points are evenly distributed
in the sense that there is at the most one point per index on the
SFC from the mapping by 𝑓 . However, collisions will happen in
most cases. Additional computational costs can be introduced by
collision handling. The worst case happens if all points are initially
mapped by 𝑓 to the same SFC index. In this case, collision handling
will take as many steps as there are points already placed on the SFC.
When placing 𝑛 points subsequently, this will lead to an average of
𝑛/2 collision-handling steps per point, or 𝒪(𝑛2) steps to handle all
𝑛 points. In total, the runtime will therefore be 𝒪(𝑛 log𝑛 + 𝑛2) =
𝒪(𝑛2). The first term𝒪(𝑛 log𝑛) comes from the initial placement of

Algorithm 2: Solve collision.
function solveCollision(𝑝 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑝left = 𝑝 − 1
𝑝right = 𝑝 + 1
while No empty valid spot found do

𝑝left = 𝑝left − 1
𝑝right = 𝑝right + 1

// Empty spot found!

// Return closest valid SFC index.

return closestAndValid𝑥𝑖 ,𝑓 −1𝑙

(
𝑝left , 𝑝right

)

the points and the second term𝒪(𝑛2) deals with collision handling.
Therefore, the worst case runtime is governed by collision handling.

However, both extreme cases are not typical for our applications.
For in-between cases, it is critical to model the number of collision-
handling steps, depending on 𝑛. Let us assume that the function
𝑐 (𝑛) provides the average number of collision-handling steps. Then,
we arrive at a total runtime of 𝒪(𝑛 log𝑛 + 𝑐 (𝑛) · 𝑛), composed
of the initial placement of points and the subsequent handling of
collisions for all 𝑛 points. Of course, 𝑐 (𝑛) depends heavily on the
distribution of points in 2D and, therefore, cannot be discussed
here in full detail. We refer to generative data models [36] for some
approaches to model data with certain characteristics that could
be related to the properties relevant for collision handling. Even
without such a data model, we know that the number of collision
handling steps are bounded: 0 ≤ 𝑐 (𝑛) ≤ 𝑛, comprising the best
and worst case scenarios from above. While 𝑐 (𝑛) is a theoretical
model, Figure 5 shows the number of actual collisions for randomly
generated uniformly distributed datasets, as well as their impact on
runtime. Therefore, our runtime will then be between 𝒪(𝑛 log𝑛)
and 𝒪(𝑛2).

4 QUANTITATIVE ANALYSIS
In this section, we present a quantitative evaluation of Hagrid in
comparison to selected techniques.

4.1 Competing Techniques
We compare our technique with its two versions, Hilbert curve
(HagridHC) and Gosper curve (HagridGC), to three state-of-the-
art approaches: CMDS, DGrid, and SMWG. We selected these can-
didates based on two criteria: (i) how well they address our use
cases, and (ii) whether the techniques had not been previously com-
pared against each other. In previous evaluations against related
methods [11, 12, 39, 46], these approaches showed very convincing
results in terms of runtime and quality metrics.

All in all, the selected methods represent some of the best avail-
able techniques that address the problem of point positioning, and
more specifically, our scatterplot layout use case. A side contribu-
tion of this paper are the Python and JavaScript implementations
of the used techniques (except SMWG), as well as of the evaluation
metrics that will be presented in the next section.

(n logn) comes from the initial placement of
the points and the second term
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in Equation 1 instead of 𝑛, where𝑤 is the percentage of whitespace.
For example, the level with guaranteed 50% whitespace is calculated
with 𝑙50% = ⌈log𝑚 (𝑛 · 1.5)⌉. Table 1 lists the maximum number of
cells available for different levels.

Table 1: The maximum number of points that can be en-
coded in an SFC of a particular level.

𝑙min 1 2 3 4 5 6 7

4 16 64 256 1024 4096 16384

7 49 343 2401 16807 117649 823543

The process of placing a point onto the SFC is similar to inserting
a value into a hash table. The recursion depth 𝑙 of the SFC depends
on the number of points in the scatterplot (see Equation 1), and
defines the required number of steps of the index computation of a
single point. The computation of an index assignment of one point
using (𝑓𝑙 ◦ 𝑔𝑙 ) : R2 → 𝐼𝑙 needs 𝒪(𝑙) time, or — as 𝑙 depends on
𝑛 (Equation 1) — 𝒪(log𝑛) time. For all points, the overall runtime
is thus 𝒪(𝑛 · 𝑙) = 𝒪(𝑛 log𝑛).

Algorithm 1: Gridify scatterplot.
Data: 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑋 is the set of the

datapoints that should get gridified
Input: The dataset 𝑋 , the mapping functions 𝑔𝑙 , 𝑓𝑙 and 𝑓 −1

𝑙
,

the depth of the space-filling curve 𝑙 ≥ 𝑙min.
Result: 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛}, the set of datapoints layed out

on the respective grid.
�̃� = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑥𝑖 = 𝑔𝑙 (𝑥𝑖 ), ∀𝑖 ∈ {1, . . . , 𝑛}
𝑃 = new Map ()
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑝𝑖 = 𝑓𝑙 (𝑥𝑖 )
// check for collision.

if 𝑃 .has (𝑝𝑖 ) then
𝑝𝑖 =solveCollision(𝑝𝑖 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑃 .set (𝑝𝑖 , 𝑖)
// remap to 2D coordinates.

𝑌 = new Array(𝑛)
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑦𝑖 = 𝑓 −1
𝑙

(𝑝𝑖 )
return Y

The above considerations are valid as long as there is no collision
on the SFC. This best case occurs if the points are evenly distributed
in the sense that there is at the most one point per index on the
SFC from the mapping by 𝑓 . However, collisions will happen in
most cases. Additional computational costs can be introduced by
collision handling. The worst case happens if all points are initially
mapped by 𝑓 to the same SFC index. In this case, collision handling
will take as many steps as there are points already placed on the SFC.
When placing 𝑛 points subsequently, this will lead to an average of
𝑛/2 collision-handling steps per point, or 𝒪(𝑛2) steps to handle all
𝑛 points. In total, the runtime will therefore be 𝒪(𝑛 log𝑛 + 𝑛2) =
𝒪(𝑛2). The first term𝒪(𝑛 log𝑛) comes from the initial placement of

Algorithm 2: Solve collision.
function solveCollision(𝑝 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑝left = 𝑝 − 1
𝑝right = 𝑝 + 1
while No empty valid spot found do

𝑝left = 𝑝left − 1
𝑝right = 𝑝right + 1

// Empty spot found!

// Return closest valid SFC index.

return closestAndValid𝑥𝑖 ,𝑓 −1𝑙

(
𝑝left , 𝑝right

)

the points and the second term𝒪(𝑛2) deals with collision handling.
Therefore, the worst case runtime is governed by collision handling.

However, both extreme cases are not typical for our applications.
For in-between cases, it is critical to model the number of collision-
handling steps, depending on 𝑛. Let us assume that the function
𝑐 (𝑛) provides the average number of collision-handling steps. Then,
we arrive at a total runtime of 𝒪(𝑛 log𝑛 + 𝑐 (𝑛) · 𝑛), composed
of the initial placement of points and the subsequent handling of
collisions for all 𝑛 points. Of course, 𝑐 (𝑛) depends heavily on the
distribution of points in 2D and, therefore, cannot be discussed
here in full detail. We refer to generative data models [36] for some
approaches to model data with certain characteristics that could
be related to the properties relevant for collision handling. Even
without such a data model, we know that the number of collision
handling steps are bounded: 0 ≤ 𝑐 (𝑛) ≤ 𝑛, comprising the best
and worst case scenarios from above. While 𝑐 (𝑛) is a theoretical
model, Figure 5 shows the number of actual collisions for randomly
generated uniformly distributed datasets, as well as their impact on
runtime. Therefore, our runtime will then be between 𝒪(𝑛 log𝑛)
and 𝒪(𝑛2).

4 QUANTITATIVE ANALYSIS
In this section, we present a quantitative evaluation of Hagrid in
comparison to selected techniques.

4.1 Competing Techniques
We compare our technique with its two versions, Hilbert curve
(HagridHC) and Gosper curve (HagridGC), to three state-of-the-
art approaches: CMDS, DGrid, and SMWG. We selected these can-
didates based on two criteria: (i) how well they address our use
cases, and (ii) whether the techniques had not been previously com-
pared against each other. In previous evaluations against related
methods [11, 12, 39, 46], these approaches showed very convincing
results in terms of runtime and quality metrics.

All in all, the selected methods represent some of the best avail-
able techniques that address the problem of point positioning, and
more specifically, our scatterplot layout use case. A side contribu-
tion of this paper are the Python and JavaScript implementations
of the used techniques (except SMWG), as well as of the evaluation
metrics that will be presented in the next section.

(n2) deals with collision handling.
Therefore, the worst case runtime is governed by collision handling.
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in Equation 1 instead of 𝑛, where𝑤 is the percentage of whitespace.
For example, the level with guaranteed 50% whitespace is calculated
with 𝑙50% = ⌈log𝑚 (𝑛 · 1.5)⌉. Table 1 lists the maximum number of
cells available for different levels.

Table 1: The maximum number of points that can be en-
coded in an SFC of a particular level.

𝑙min 1 2 3 4 5 6 7

4 16 64 256 1024 4096 16384

7 49 343 2401 16807 117649 823543

The process of placing a point onto the SFC is similar to inserting
a value into a hash table. The recursion depth 𝑙 of the SFC depends
on the number of points in the scatterplot (see Equation 1), and
defines the required number of steps of the index computation of a
single point. The computation of an index assignment of one point
using (𝑓𝑙 ◦ 𝑔𝑙 ) : R2 → 𝐼𝑙 needs 𝒪(𝑙) time, or — as 𝑙 depends on
𝑛 (Equation 1) — 𝒪(log𝑛) time. For all points, the overall runtime
is thus 𝒪(𝑛 · 𝑙) = 𝒪(𝑛 log𝑛).

Algorithm 1: Gridify scatterplot.
Data: 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑋 is the set of the

datapoints that should get gridified
Input: The dataset 𝑋 , the mapping functions 𝑔𝑙 , 𝑓𝑙 and 𝑓 −1

𝑙
,

the depth of the space-filling curve 𝑙 ≥ 𝑙min.
Result: 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛}, the set of datapoints layed out

on the respective grid.
�̃� = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑥𝑖 = 𝑔𝑙 (𝑥𝑖 ), ∀𝑖 ∈ {1, . . . , 𝑛}
𝑃 = new Map ()
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑝𝑖 = 𝑓𝑙 (𝑥𝑖 )
// check for collision.

if 𝑃 .has (𝑝𝑖 ) then
𝑝𝑖 =solveCollision(𝑝𝑖 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑃 .set (𝑝𝑖 , 𝑖)
// remap to 2D coordinates.

𝑌 = new Array(𝑛)
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑦𝑖 = 𝑓 −1
𝑙

(𝑝𝑖 )
return Y

The above considerations are valid as long as there is no collision
on the SFC. This best case occurs if the points are evenly distributed
in the sense that there is at the most one point per index on the
SFC from the mapping by 𝑓 . However, collisions will happen in
most cases. Additional computational costs can be introduced by
collision handling. The worst case happens if all points are initially
mapped by 𝑓 to the same SFC index. In this case, collision handling
will take as many steps as there are points already placed on the SFC.
When placing 𝑛 points subsequently, this will lead to an average of
𝑛/2 collision-handling steps per point, or 𝒪(𝑛2) steps to handle all
𝑛 points. In total, the runtime will therefore be 𝒪(𝑛 log𝑛 + 𝑛2) =
𝒪(𝑛2). The first term𝒪(𝑛 log𝑛) comes from the initial placement of

Algorithm 2: Solve collision.
function solveCollision(𝑝 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑝left = 𝑝 − 1
𝑝right = 𝑝 + 1
while No empty valid spot found do

𝑝left = 𝑝left − 1
𝑝right = 𝑝right + 1

// Empty spot found!

// Return closest valid SFC index.

return closestAndValid𝑥𝑖 ,𝑓 −1𝑙

(
𝑝left , 𝑝right

)

the points and the second term𝒪(𝑛2) deals with collision handling.
Therefore, the worst case runtime is governed by collision handling.

However, both extreme cases are not typical for our applications.
For in-between cases, it is critical to model the number of collision-
handling steps, depending on 𝑛. Let us assume that the function
𝑐 (𝑛) provides the average number of collision-handling steps. Then,
we arrive at a total runtime of 𝒪(𝑛 log𝑛 + 𝑐 (𝑛) · 𝑛), composed
of the initial placement of points and the subsequent handling of
collisions for all 𝑛 points. Of course, 𝑐 (𝑛) depends heavily on the
distribution of points in 2D and, therefore, cannot be discussed
here in full detail. We refer to generative data models [36] for some
approaches to model data with certain characteristics that could
be related to the properties relevant for collision handling. Even
without such a data model, we know that the number of collision
handling steps are bounded: 0 ≤ 𝑐 (𝑛) ≤ 𝑛, comprising the best
and worst case scenarios from above. While 𝑐 (𝑛) is a theoretical
model, Figure 5 shows the number of actual collisions for randomly
generated uniformly distributed datasets, as well as their impact on
runtime. Therefore, our runtime will then be between 𝒪(𝑛 log𝑛)
and 𝒪(𝑛2).

4 QUANTITATIVE ANALYSIS
In this section, we present a quantitative evaluation of Hagrid in
comparison to selected techniques.

4.1 Competing Techniques
We compare our technique with its two versions, Hilbert curve
(HagridHC) and Gosper curve (HagridGC), to three state-of-the-
art approaches: CMDS, DGrid, and SMWG. We selected these can-
didates based on two criteria: (i) how well they address our use
cases, and (ii) whether the techniques had not been previously com-
pared against each other. In previous evaluations against related
methods [11, 12, 39, 46], these approaches showed very convincing
results in terms of runtime and quality metrics.

All in all, the selected methods represent some of the best avail-
able techniques that address the problem of point positioning, and
more specifically, our scatterplot layout use case. A side contribu-
tion of this paper are the Python and JavaScript implementations
of the used techniques (except SMWG), as well as of the evaluation
metrics that will be presented in the next section.

However, both extreme cases are not typical for our applications.
For in-between cases, it is critical to model the number of collision-
handling steps, depending on n. Let us assume that the function
c(n) provides the average number of collision-handling steps. Then,
we arrive at a total runtime of
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in Equation 1 instead of 𝑛, where𝑤 is the percentage of whitespace.
For example, the level with guaranteed 50% whitespace is calculated
with 𝑙50% = ⌈log𝑚 (𝑛 · 1.5)⌉. Table 1 lists the maximum number of
cells available for different levels.

Table 1: The maximum number of points that can be en-
coded in an SFC of a particular level.

𝑙min 1 2 3 4 5 6 7

4 16 64 256 1024 4096 16384

7 49 343 2401 16807 117649 823543

The process of placing a point onto the SFC is similar to inserting
a value into a hash table. The recursion depth 𝑙 of the SFC depends
on the number of points in the scatterplot (see Equation 1), and
defines the required number of steps of the index computation of a
single point. The computation of an index assignment of one point
using (𝑓𝑙 ◦ 𝑔𝑙 ) : R2 → 𝐼𝑙 needs 𝒪(𝑙) time, or — as 𝑙 depends on
𝑛 (Equation 1) — 𝒪(log𝑛) time. For all points, the overall runtime
is thus 𝒪(𝑛 · 𝑙) = 𝒪(𝑛 log𝑛).

Algorithm 1: Gridify scatterplot.
Data: 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑋 is the set of the

datapoints that should get gridified
Input: The dataset 𝑋 , the mapping functions 𝑔𝑙 , 𝑓𝑙 and 𝑓 −1

𝑙
,

the depth of the space-filling curve 𝑙 ≥ 𝑙min.
Result: 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛}, the set of datapoints layed out

on the respective grid.
�̃� = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑥𝑖 = 𝑔𝑙 (𝑥𝑖 ), ∀𝑖 ∈ {1, . . . , 𝑛}
𝑃 = new Map ()
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑝𝑖 = 𝑓𝑙 (𝑥𝑖 )
// check for collision.

if 𝑃 .has (𝑝𝑖 ) then
𝑝𝑖 =solveCollision(𝑝𝑖 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑃 .set (𝑝𝑖 , 𝑖)
// remap to 2D coordinates.

𝑌 = new Array(𝑛)
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑦𝑖 = 𝑓 −1
𝑙

(𝑝𝑖 )
return Y

The above considerations are valid as long as there is no collision
on the SFC. This best case occurs if the points are evenly distributed
in the sense that there is at the most one point per index on the
SFC from the mapping by 𝑓 . However, collisions will happen in
most cases. Additional computational costs can be introduced by
collision handling. The worst case happens if all points are initially
mapped by 𝑓 to the same SFC index. In this case, collision handling
will take as many steps as there are points already placed on the SFC.
When placing 𝑛 points subsequently, this will lead to an average of
𝑛/2 collision-handling steps per point, or 𝒪(𝑛2) steps to handle all
𝑛 points. In total, the runtime will therefore be 𝒪(𝑛 log𝑛 + 𝑛2) =
𝒪(𝑛2). The first term𝒪(𝑛 log𝑛) comes from the initial placement of

Algorithm 2: Solve collision.
function solveCollision(𝑝 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑝left = 𝑝 − 1
𝑝right = 𝑝 + 1
while No empty valid spot found do

𝑝left = 𝑝left − 1
𝑝right = 𝑝right + 1

// Empty spot found!

// Return closest valid SFC index.

return closestAndValid𝑥𝑖 ,𝑓 −1𝑙

(
𝑝left , 𝑝right

)

the points and the second term𝒪(𝑛2) deals with collision handling.
Therefore, the worst case runtime is governed by collision handling.

However, both extreme cases are not typical for our applications.
For in-between cases, it is critical to model the number of collision-
handling steps, depending on 𝑛. Let us assume that the function
𝑐 (𝑛) provides the average number of collision-handling steps. Then,
we arrive at a total runtime of 𝒪(𝑛 log𝑛 + 𝑐 (𝑛) · 𝑛), composed
of the initial placement of points and the subsequent handling of
collisions for all 𝑛 points. Of course, 𝑐 (𝑛) depends heavily on the
distribution of points in 2D and, therefore, cannot be discussed
here in full detail. We refer to generative data models [36] for some
approaches to model data with certain characteristics that could
be related to the properties relevant for collision handling. Even
without such a data model, we know that the number of collision
handling steps are bounded: 0 ≤ 𝑐 (𝑛) ≤ 𝑛, comprising the best
and worst case scenarios from above. While 𝑐 (𝑛) is a theoretical
model, Figure 5 shows the number of actual collisions for randomly
generated uniformly distributed datasets, as well as their impact on
runtime. Therefore, our runtime will then be between 𝒪(𝑛 log𝑛)
and 𝒪(𝑛2).

4 QUANTITATIVE ANALYSIS
In this section, we present a quantitative evaluation of Hagrid in
comparison to selected techniques.

4.1 Competing Techniques
We compare our technique with its two versions, Hilbert curve
(HagridHC) and Gosper curve (HagridGC), to three state-of-the-
art approaches: CMDS, DGrid, and SMWG. We selected these can-
didates based on two criteria: (i) how well they address our use
cases, and (ii) whether the techniques had not been previously com-
pared against each other. In previous evaluations against related
methods [11, 12, 39, 46], these approaches showed very convincing
results in terms of runtime and quality metrics.

All in all, the selected methods represent some of the best avail-
able techniques that address the problem of point positioning, and
more specifically, our scatterplot layout use case. A side contribu-
tion of this paper are the Python and JavaScript implementations
of the used techniques (except SMWG), as well as of the evaluation
metrics that will be presented in the next section.

(n logn + c(n) · n), composed of
the initial placement of points and the subsequent handling of
collisions for all n points. Of course, c(n) depends heavily on the
distribution of points in 2D and, therefore, cannot be discussed
here in full detail. We refer to generative data models [36] for some
approaches to model data with certain characteristics that could
be related to the properties relevant for collision handling. Even
without such a data model, we know that the number of collision
handling steps are bounded: 0 ≤ c(n) ≤ n, comprising the best
and worst case scenarios from above. While c(n) is a theoretical
model, Figure 5 shows the number of actual collisions for randomly
generated uniformly distributed datasets, as well as their impact on
runtime. Therefore, our runtime will then be between
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in Equation 1 instead of 𝑛, where𝑤 is the percentage of whitespace.
For example, the level with guaranteed 50% whitespace is calculated
with 𝑙50% = ⌈log𝑚 (𝑛 · 1.5)⌉. Table 1 lists the maximum number of
cells available for different levels.

Table 1: The maximum number of points that can be en-
coded in an SFC of a particular level.

𝑙min 1 2 3 4 5 6 7

4 16 64 256 1024 4096 16384

7 49 343 2401 16807 117649 823543

The process of placing a point onto the SFC is similar to inserting
a value into a hash table. The recursion depth 𝑙 of the SFC depends
on the number of points in the scatterplot (see Equation 1), and
defines the required number of steps of the index computation of a
single point. The computation of an index assignment of one point
using (𝑓𝑙 ◦ 𝑔𝑙 ) : R2 → 𝐼𝑙 needs 𝒪(𝑙) time, or — as 𝑙 depends on
𝑛 (Equation 1) — 𝒪(log𝑛) time. For all points, the overall runtime
is thus 𝒪(𝑛 · 𝑙) = 𝒪(𝑛 log𝑛).

Algorithm 1: Gridify scatterplot.
Data: 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑋 is the set of the

datapoints that should get gridified
Input: The dataset 𝑋 , the mapping functions 𝑔𝑙 , 𝑓𝑙 and 𝑓 −1

𝑙
,

the depth of the space-filling curve 𝑙 ≥ 𝑙min.
Result: 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛}, the set of datapoints layed out

on the respective grid.
�̃� = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑥𝑖 = 𝑔𝑙 (𝑥𝑖 ), ∀𝑖 ∈ {1, . . . , 𝑛}
𝑃 = new Map ()
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑝𝑖 = 𝑓𝑙 (𝑥𝑖 )
// check for collision.

if 𝑃 .has (𝑝𝑖 ) then
𝑝𝑖 =solveCollision(𝑝𝑖 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑃 .set (𝑝𝑖 , 𝑖)
// remap to 2D coordinates.

𝑌 = new Array(𝑛)
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑦𝑖 = 𝑓 −1
𝑙

(𝑝𝑖 )
return Y

The above considerations are valid as long as there is no collision
on the SFC. This best case occurs if the points are evenly distributed
in the sense that there is at the most one point per index on the
SFC from the mapping by 𝑓 . However, collisions will happen in
most cases. Additional computational costs can be introduced by
collision handling. The worst case happens if all points are initially
mapped by 𝑓 to the same SFC index. In this case, collision handling
will take as many steps as there are points already placed on the SFC.
When placing 𝑛 points subsequently, this will lead to an average of
𝑛/2 collision-handling steps per point, or 𝒪(𝑛2) steps to handle all
𝑛 points. In total, the runtime will therefore be 𝒪(𝑛 log𝑛 + 𝑛2) =
𝒪(𝑛2). The first term𝒪(𝑛 log𝑛) comes from the initial placement of

Algorithm 2: Solve collision.
function solveCollision(𝑝 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑝left = 𝑝 − 1
𝑝right = 𝑝 + 1
while No empty valid spot found do

𝑝left = 𝑝left − 1
𝑝right = 𝑝right + 1

// Empty spot found!

// Return closest valid SFC index.

return closestAndValid𝑥𝑖 ,𝑓 −1𝑙

(
𝑝left , 𝑝right

)

the points and the second term𝒪(𝑛2) deals with collision handling.
Therefore, the worst case runtime is governed by collision handling.

However, both extreme cases are not typical for our applications.
For in-between cases, it is critical to model the number of collision-
handling steps, depending on 𝑛. Let us assume that the function
𝑐 (𝑛) provides the average number of collision-handling steps. Then,
we arrive at a total runtime of 𝒪(𝑛 log𝑛 + 𝑐 (𝑛) · 𝑛), composed
of the initial placement of points and the subsequent handling of
collisions for all 𝑛 points. Of course, 𝑐 (𝑛) depends heavily on the
distribution of points in 2D and, therefore, cannot be discussed
here in full detail. We refer to generative data models [36] for some
approaches to model data with certain characteristics that could
be related to the properties relevant for collision handling. Even
without such a data model, we know that the number of collision
handling steps are bounded: 0 ≤ 𝑐 (𝑛) ≤ 𝑛, comprising the best
and worst case scenarios from above. While 𝑐 (𝑛) is a theoretical
model, Figure 5 shows the number of actual collisions for randomly
generated uniformly distributed datasets, as well as their impact on
runtime. Therefore, our runtime will then be between 𝒪(𝑛 log𝑛)
and 𝒪(𝑛2).

4 QUANTITATIVE ANALYSIS
In this section, we present a quantitative evaluation of Hagrid in
comparison to selected techniques.

4.1 Competing Techniques
We compare our technique with its two versions, Hilbert curve
(HagridHC) and Gosper curve (HagridGC), to three state-of-the-
art approaches: CMDS, DGrid, and SMWG. We selected these can-
didates based on two criteria: (i) how well they address our use
cases, and (ii) whether the techniques had not been previously com-
pared against each other. In previous evaluations against related
methods [11, 12, 39, 46], these approaches showed very convincing
results in terms of runtime and quality metrics.

All in all, the selected methods represent some of the best avail-
able techniques that address the problem of point positioning, and
more specifically, our scatterplot layout use case. A side contribu-
tion of this paper are the Python and JavaScript implementations
of the used techniques (except SMWG), as well as of the evaluation
metrics that will be presented in the next section.
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in Equation 1 instead of 𝑛, where𝑤 is the percentage of whitespace.
For example, the level with guaranteed 50% whitespace is calculated
with 𝑙50% = ⌈log𝑚 (𝑛 · 1.5)⌉. Table 1 lists the maximum number of
cells available for different levels.

Table 1: The maximum number of points that can be en-
coded in an SFC of a particular level.

𝑙min 1 2 3 4 5 6 7

4 16 64 256 1024 4096 16384

7 49 343 2401 16807 117649 823543

The process of placing a point onto the SFC is similar to inserting
a value into a hash table. The recursion depth 𝑙 of the SFC depends
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𝑙
,

the depth of the space-filling curve 𝑙 ≥ 𝑙min.
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�̃� = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑥𝑖 = 𝑔𝑙 (𝑥𝑖 ), ∀𝑖 ∈ {1, . . . , 𝑛}
𝑃 = new Map ()
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑝𝑖 = 𝑓𝑙 (𝑥𝑖 )
// check for collision.

if 𝑃 .has (𝑝𝑖 ) then
𝑝𝑖 =solveCollision(𝑝𝑖 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑃 .set (𝑝𝑖 , 𝑖)
// remap to 2D coordinates.

𝑌 = new Array(𝑛)
foreach 𝑖 ∈ {1, . . . , 𝑛} do

𝑦𝑖 = 𝑓 −1
𝑙

(𝑝𝑖 )
return Y

The above considerations are valid as long as there is no collision
on the SFC. This best case occurs if the points are evenly distributed
in the sense that there is at the most one point per index on the
SFC from the mapping by 𝑓 . However, collisions will happen in
most cases. Additional computational costs can be introduced by
collision handling. The worst case happens if all points are initially
mapped by 𝑓 to the same SFC index. In this case, collision handling
will take as many steps as there are points already placed on the SFC.
When placing 𝑛 points subsequently, this will lead to an average of
𝑛/2 collision-handling steps per point, or 𝒪(𝑛2) steps to handle all
𝑛 points. In total, the runtime will therefore be 𝒪(𝑛 log𝑛 + 𝑛2) =
𝒪(𝑛2). The first term𝒪(𝑛 log𝑛) comes from the initial placement of

Algorithm 2: Solve collision.
function solveCollision(𝑝 , 𝑥𝑖 , 𝑓 −1𝑙

)

𝑝left = 𝑝 − 1
𝑝right = 𝑝 + 1
while No empty valid spot found do

𝑝left = 𝑝left − 1
𝑝right = 𝑝right + 1

// Empty spot found!

// Return closest valid SFC index.

return closestAndValid𝑥𝑖 ,𝑓 −1𝑙

(
𝑝left , 𝑝right

)

the points and the second term𝒪(𝑛2) deals with collision handling.
Therefore, the worst case runtime is governed by collision handling.

However, both extreme cases are not typical for our applications.
For in-between cases, it is critical to model the number of collision-
handling steps, depending on 𝑛. Let us assume that the function
𝑐 (𝑛) provides the average number of collision-handling steps. Then,
we arrive at a total runtime of 𝒪(𝑛 log𝑛 + 𝑐 (𝑛) · 𝑛), composed
of the initial placement of points and the subsequent handling of
collisions for all 𝑛 points. Of course, 𝑐 (𝑛) depends heavily on the
distribution of points in 2D and, therefore, cannot be discussed
here in full detail. We refer to generative data models [36] for some
approaches to model data with certain characteristics that could
be related to the properties relevant for collision handling. Even
without such a data model, we know that the number of collision
handling steps are bounded: 0 ≤ 𝑐 (𝑛) ≤ 𝑛, comprising the best
and worst case scenarios from above. While 𝑐 (𝑛) is a theoretical
model, Figure 5 shows the number of actual collisions for randomly
generated uniformly distributed datasets, as well as their impact on
runtime. Therefore, our runtime will then be between 𝒪(𝑛 log𝑛)
and 𝒪(𝑛2).

4 QUANTITATIVE ANALYSIS
In this section, we present a quantitative evaluation of Hagrid in
comparison to selected techniques.

4.1 Competing Techniques
We compare our technique with its two versions, Hilbert curve
(HagridHC) and Gosper curve (HagridGC), to three state-of-the-
art approaches: CMDS, DGrid, and SMWG. We selected these can-
didates based on two criteria: (i) how well they address our use
cases, and (ii) whether the techniques had not been previously com-
pared against each other. In previous evaluations against related
methods [11, 12, 39, 46], these approaches showed very convincing
results in terms of runtime and quality metrics.

All in all, the selected methods represent some of the best avail-
able techniques that address the problem of point positioning, and
more specifically, our scatterplot layout use case. A side contribu-
tion of this paper are the Python and JavaScript implementations
of the used techniques (except SMWG), as well as of the evaluation
metrics that will be presented in the next section.
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4 QUANTITATIVE ANALYSIS
In this section, we present a quantitative evaluation of Hagrid in
comparison to selected techniques.

4.1 Competing Techniques
We compare our technique with its two versions, Hilbert curve
(HagridHC) and Gosper curve (HagridGC), to three state-of-the-
art approaches: CMDS, DGrid, and SMWG. We selected these can-
didates based on two criteria: (i) how well they address our use
cases, and (ii) whether the techniques had not been previously com-
pared against each other. In previous evaluations against related
methods [11, 12, 39, 46], these approaches showed very convincing
results in terms of runtime and quality metrics.

All in all, the selected methods represent some of the best avail-
able techniques that address the problem of point positioning, and
more specifically, our scatterplot layout use case. A side contribu-
tion of this paper are the Python and JavaScript implementations
of the used techniques (except SMWG), as well as of the evaluation
metrics that will be presented in the next section.

4.2 Evaluation Metrics
For the comparison, we have selected the following evaluation met-
rics: neighborhood preservation (NP, also called AUClogRNX [22]),
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Datasets NP CC SI ED Runtime/ms
bigger better ▶

0 0.2 0.4 0.6 0.8 1

bigger better ▶
-1 -0.5 0 0.5 1

closer to 1 better

2-1 20 21 22
◀ smaller better

0 0.2 0.4 0.6 0.8 1

◀ smaller better

10-2 100 102 104

50 × 0–100 ◀ ◀ ◀ ◀ ◀

54 × 100–250 ◀ ◀ ◀ ◀ ◀

82 × 250–500 ◀ ◀ ◀ ◀ ◀

34 × 500–750 ◀ ◀ ◀ ◀ ◀

61 × 750–1000 ◀ ◀ ◀ ◀ ◀

58 × 1000–2000 ◀ ◀ ◀ ◀ ◀
0 0.2 0.4 0.6 0.8 1 -1 -0.5 0 0.5 1 2-1 20 21 22 0 0.2 0.4 0.6 0.8 1 10-2 100 102 104

All 339 ◀ ◀ ◀ ◀ ◀

◀ HagridHC ◀ HagridGC ◀ DGrid ◀ CMDS ◀ SMWG

Figure 4: Results of our evaluation of the 339 scatterplots, aggregated by dataset size, and with all data in the last row. The
boxplots show the median, the 25% and 75% quantiles, while the ends show the 5- and the 95 percentile. The color of the
triangles indicates the best method, measured by the median of the particular metric. The results demonstrate that in each
metricHagrid performs better than the other techniques, except for NP for dataset sizes smaller than 250 points. The runtime
(log10-scale) of Hagrid is better than any other technique. The fastest alternative isDGrid, which is four times slower though.
The outliers of HagridHC and HagridGC for NP in the last group stem from some projections of the paris buildings dataset,
see the supplemental materials for more detail.
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Figure 5: Charts showing runtime evaluation of generated
data (uniformly distributed points, with values from [0, 1]
for each dimension) with specific dataset sizes (x-axis) for
HagridHC, HagridGC, and DGrid. We computed the grid
layouts with the three techniques for dataset sizes from
1.000 to 10.000 with a step size of 100, 20 times for each
dataset size and each method. The lines show the connected
means per dataset size. We measured the runtime (upper
chart in ms) and the number of collisions occurred (bottom
chart, log-scale). The charts show that — as expected —more
collisions increase the runtimes slightly (forHagridHC at n
= 4.000 and for HagridGC at n = 2.400).

cross-correlation (CC), Euclidean distance (ED), size increase (SI),
and runtime (RT). The metrics in this list were selected based on
the ones mentioned in the related work. Details of the metrics can
be found in the supplemental materials.

Our motivation behind selecting these particular metrics is two-
fold. Neighborhood preservation and cross-correlation describe

whether the local neighborhoods are preserved. The other metrics,
Euclidean-distance and size increase, are more sensitive to how the
global aspect of the scatterplot changes. We have selected those
metrics, because our main goal is to remove overlap, while roughly
holding the position of the points in the original scatterplots. The
local metrics neighborhood preservation and cross-correlation will
help us compare against DGrid where the overarching goal was
space-filling while maintaining neighborhoods. To make the met-
rics comparable, we scaled the extents of all original and gridified
scatterplots to [0, 1].

4.3 Evaluation Data
For the evaluation, we gathered 60 real and synthetic datasets. 54
of these datasets stem from Aupetit and Sedlmair [1]. We have
further included six additional image datasets publicly available
online. From these datasets, we created a total of 339 scatterplots
by projecting them with different dimensionality reduction (DR)
methods. Thesemethods lead to vastly diverse layoutswith different
distributions of points across them. Therefore, they allow us to
assess how well HagridHC, HagridGC, and the other techniques
perform depending on the number of points in the dataset, and on
the number of total collisions.

In the supplemental material, we provide a list of the datasets
involved in the evaluation. We include their names, sizes, and num-
ber of projections computed on each. In terms of DR algorithms, we
used PCA [32], robust PCA [5], t-SNE [42], Isomap [40], LLE [35],
UMAP [25], Spectral Embedding [2], Gaussian Random Project [3],
and MDS [21]. For parametric DRs, we performed a grid search
through a range of values for each parameter involved. The final 339
scatterplots were selected by uniformly sampling across different
scatterplot sizes from a total of 1695 projections.
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(a) UMAP projection (b) HagridHC (l = lmin)

(c) HagridHC (l = lmin + 1) (d) DGrid

Figure 6: The UMAP projection of theCOIL-100 dataset with
overlaps, and gridified versions of the projection.

4.4 Evaluation Setup
We implemented HagridHC and HagridGC, as well as CMDS and
DGrid in Python and JavaScript. For SMWG, we used the available
online tool [27] as we could not replicate the code based on publicly
available information. All evaluations were run on an Intel(R)
Core(TM) i7-8705G CPU @ 3.10GHz, with 16GB of RAM.

We categorized the 339 scatterplots into six groups according
to the number of points (see Figure 4). HagridHC, HagridGC, and
DGrid were computed for all 339 scatterplots. CMDS were only
computed for scatterplots up to 250 points (group 1 and 2), and
SMWG only for scatterplots up to 100 points (group 1). The reason
behind this choice is that the computation times of these two tech-
niques became intractable for larger datasets. These computation
times were far beyond the requirements of our use case for rapid or
even interactive application of such approaches. Last, we computed
the quality metrics for all results.

The supplemental material includes further details and the code
to reproduce the evaluation results.

4.5 Results
Figure 4 summarizes the results of our comparative evaluation
according to the four quality metrics introduced and the runtime.
We investigate the scalability of Hagrid, by aggregating the results
according to dataset size, and an extra evaluation only measuring
the runtime in Figure 5. The supplemental material contains a more
detailed version of Figure 4, which shows the results for each dataset
separately. As we fixed CMDS’ number of maximum rounds to 50,
not all overlap was removed from the final layout, and the quality
metrics should be slightly more optimistic as the 50th round layout
will always be closer to the original.

Generally, Hagrid’s runtime outperforms every other method
we evaluated against and is about four times as fast compared to the
next best technique, DGrid, across different dataset sizes. Hagrid

outperforms the other methods in almost all metrics, except for
NP. SMWG and CMDS produce generally good quality results, but
at the cost of much higher runtimes. In group 1 (0 – 100 points),
Hagrid needs roughly a millisecond to gridify the result, whereas
SMWG needed on average 30 seconds. Please note that, in Figure 4,
we use a log10-scale for runtime and a log2-scale for the SI metric
to improve readability.

Finally, we show in Figure 6 the resulting grids for the UMAP-
reduced COIL-100 dataset [31]. We compare the original plot in
Figure 6a, the gridified results for Hagrid, computed for both min-
imum available level (in Figure 6b) and a higher depth level (in
6c)), and the DGrid version (6d). The runtime for CMDS was too
high, and the online-tool for SMWG even crashed for this dataset,
which has 792 samples. Further qualitative results and examples
are available in the supplemental materials.

5 CONCLUSIONS AND FUTUREWORK
A limitation of Hagrid and other gridifying techniques occurs in
scatterplots with very dense or differently dense regions. To main-
tain the global structure of differently dense or very dense areas
of scatterplots with Hagrid, high levels of the respective SFC are
required, which can lead to very small grid cells. We found this
behavior also in our analysis, where some of the scatterplots led
to bad results, especially for the NP metric (see Figure 4). Hagrid
is sensitive to extreme outliers, which entail non-outlying points
being squished into very small areas in the scatterplot. Such situa-
tions are sub-optimal for filling a static SFC grid as many collisions
occur (see supplemental material for examples).

An additional limitation is inherited from the SFCs used, Hilbert
and Gosper curves, which are not circular. When collisions happen
close to the ends of the curves, Algorithm 2 has an imbalanced
number of vertices to the left and to the right, which might worsen
the quality of the result. In the future, we want to replace the
SFCs used with their circular versions. The Moore curve [15] is, for
instance, the circular alternative of the Hilbert curve. We used the
Hilbert curve and the Gosper curve because these implementations
have better computational efficiency.

In this paper, we proposed Hagrid, a novel approach for gen-
erating gridified layouts that preserves the local and global neigh-
borhoods and cluster structure of a scatterplot, while removing the
overlap of point representations. We demonstrated the approach by
employing two space-filling curves, Hilbert and Gosper, to create
squared and hexagonal grids. The set of comparisons we provide
shows that our technique outperforms the existing state-of-the-art
techniques in terms of different quality metrics, and is roughly four
times faster than them.
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