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Figure 1: A detail view on a section of the t-SNE projection of the Art UK Paintings dataset. Gridified with HAGRIDGC.
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A INTRODUCTION
This supplemental material contains six parts: (B) Details on the
datasets that we used for the quantitative evaluation in the paper,
(C) details on the used metrics for the evaluation, (D) a more de-
tailed representation of the results of this quantitative evaluation,
(E) a qualitative illustration of HAGRID being applied to the Art
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UK Paintings dataset, (F) two use cases of HAGRID applied in in-
teractive scenarios, and (G) a more detailed analysis of HAGRID’s
limitation w.r.t. datasets with extreme outliers.

B DATASETS
Table 1 shows the complete list of all datasets used in our evalu-
ation. As already mentioned in Section 4 of our main document,
we have used a total of 60 real and synthetic datasets to produce
the scatterplots used in the evaluation. 54 of these datasets were
proposed in the work by Sedlmair et al. [1, 22]. This data collection
consists of both real and synthetic datasets. We have selected this
dataset as it was previously used in a study relating to dimensional-
ity reduction (DR) projections [22]. We have augmented this data
with six additional collections of images including well known
machine learning benchmarks [6, 16, 25], as well as other art and
photography collections[5, 17, 20].

From the 60 datasets collected, we have generated 1695 dimen-
sionality reduced projections using both linear and non-linear
DR algorithms [2–4, 12, 15, 19, 21, 23, 24], as well as a parame-
ter search for the parametric levels. We uniformly sampled 339
projections by taking the size of the dataset into account.

C EVALUATION METRICS
Neighborhood Preservation (NP, originally also called AUClogRNX [13])
is a metric that enhances the metric k-Neighborhood Preserva-
tion (NPk ) [18] by aggregating the measurements for all neigh-
borhood sizes k. The metric NPk is used by nearly all methods
mentioned in the related work section [7, 8, 10, 14]. It calculates
the average percentage of the k-nearest neighbors of each box that
are preserved in the final layout. It takes a value between 0 and 1.
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We calculate NPk as follows:

NPk = 1

n ·k

nÍ
i=1

∣∣∣V (k)
i (X )∩V (k)

i (Y )
∣∣∣,

where X is the original set of points, Y is the gridified set of points.

V (k)
i returns the set of the k-nearest neighbors of the i -th point of

the respective set of datapoints, and n is the total number of points
in the data. These values are scaled and aggregated as follows:

ÑPk = (n −1)NPk −k

n −1−k
,

NP =
(Ín−2

k=1
ÑPk/k

)
(Ín−2

k=1
1/k

) .
(1)

Values between 0 and 1 are possible, where 1 means perfect neigh-
borhood preservation, and 0 means no neighborhood preserva-
tion.

Cross-Correlation (CC) measures the distance correlation be-
tween pairwise distances in the original layout compared to ones
in the new layout. The distance can be interpreted as a measure
of dissimilarity between the points; ideally, dissimilar points in
the original layout remain as such in the new one. Hilasaca and
Paulovich [10] also use this measure in their evaluation of DGRID.
The CC measure is defined as:

CC = nÍ
i=1

nÍ
j=1

(
δ(yi , y j )−δY

)
·
(
δ(xi , x j )−δX

)
σX ·σY

, (2)

where xi and x j are points belonging to X (the original set of
points), yi and y j are points belonging to Y (the gridified set of
points), σX and σY are the respective standard deviations, and
δX and δY are the respective mean distances between any pair of
points.

This measure should be interpreted the same way as any corre-
lation coefficient would be. If the value is close to −1, the pairwise
distances are negatively correlated, i.e., points that used to be close
together are now far away from each other. If the value is around
0, it means that there is no relationship between the pairwise dis-
tances of the original and new layouts. Ideally, this measure takes
the value of 1: then, points that were close together stay together,
and points further away from each other remain far away.

Euclidean Distance (ED) is the average distance between the
original points and their gridified counterparts:

ED = 1

n

nÍ
i=1

δ
(
xi , yi

)
, (3)

where xi and yi correspond again to the original and the final po-
sition of our data points. We use Euclidean distance as a measure
for the global structure of the visualization. The main objective of
methods such as NMAP and DGRID is a space-filling visualization,
rather than the preservation of global structure. Therefore, we ex-
pect them to perform poorly with respect to Euclidean distance.
In our case, intuitively, in order for the global structure to change
as little as possible, the points should be moved to a position as
close as possible. The higher the average Euclidean distance is, the
worse the global structure of the graph is preserved.

Size Increase (SI) is the ratio of the area of the convex hull of
the initial scatterplot (CX ) and the area of the convex hull of the

gridified version (CY ):

SI = area (CY )

area (CX )
. (4)

This measure is used for global structure preservation. Ideally, the
resulting grid has a similar convex hull to the initial one. While the
range for values of size increase is ]0,∞[, 1 is the optimal value.
Size Increase has also been used in previous evaluations [7, 9]. Due
to the space-filling aspect of DGRID, this metric will be expected
to have worse results.

Run Time (RT) is the total time needed for one technique to
compute the gridified version from the original scatterplot. All
the techniques we evaluated against also examine the running
performance of their methods in terms of time.

D ADDITIONAL RESULTS
Figure 4 - 6 show an alternative and more detailed representation
of the results of quantitative evaluation. These figures show the
metric results for each dataset separately, while the version in the
paper shows the results aggregated by groups of datasets with
similar number of points.

E EXAMPLE OF ART UK PAINTINGS
We include the full Art UK Paintings t-SNE projection that is used
in the teaser image of the paper. The Art UK Paintings is a dataset
consisting of 7792 images. Figure 7a is the original t-SNE layout,
and Figure 7b is the full-scale figure of the resulting Gosper layout
after using HAGRID.

F USE CASES
Our primaray goal with HAGRID was to find a good balance be-
tween removing overlap, preserving scatterplots structure, while
having a fast runtime. To illustrate the value of this combination,
we now provide two use cases: adjusting the curve level to create
different types of layouts, and realizing an interactive lens view.

F.1 Interactively Adjusting Level and Point Size

(a) HAGRIDHC (l = 5) (b) HAGRIDHC (l = 6) (c) DGRID

Figure 2: Gridified versions of the t-SNE projection of the Art
UK Paintings dataset [5] for different settings of the HAGRIDHC
level parameters and the DGRID layout.

By altering the level parameter of our technique, HAGRID gives
a natural handle to deal with the trade-off between space-filling-
ness (cell size and space efficiency) and point position accuracy
(global structure preservation). With a low level setting, HAGRID

can achieve a more squared layout, similar to DGRID. An example
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is given in Figure 2, where we can see the difference between a
layout with the minimum HAGRIDHC level (5), one level higher (6)
that outputs the grid, and the DGRID layout for reference. In our
situation, the white space is still scattered around the convex hull
of the initial layout. Interactively transitioning between different
levels allows to step-wise translate a scatterplot into a space-filling
map with HAGRID.

F.2 Lens View

(a) Scatterplot of a projec-
tion of a flowers dataset.

(b) HAGRIDHC Lens (l = 3).

(c) HAGRIDHC Lens (l = 2). (d) HAGRIDHC Lens (l = 2).

Figure 3: Usage of HAGRID as lens. The circles indicate the
mouse position for the screenshots (b), (c), and (d).

Due to its computational efficiency, our approach can also be
used to support interactive lenses such as the one proposed in
Glyphboard [11]. In Glyphboard, DR projections are plotted as nor-
mal scatterplots and as the user zooms in, the dots are replaced
with circular glyphs. The lens view in their implementation is using
a force-directed layout algorithm to handle overlap, but that does
not guarantee neighborhood preservation. Based on our compar-
ison to CMDS, which closely resembles a force-directed layout
algorithm, we believe our technique could fit this type of use case
better. In Figure 3, we show a possible way of using HAGRID as part
of a lens view. Here, we used a t-SNE projection of photographs of
flowers as the source dataset [17]. For the overall scatterplot, we
maintain the original scatterplot, with overlaps. However, in the
lens view we use a low-level HC, to dynamically align the photos.
As our approach is computationally efficient, it lends itself toward
supporting such interactive features.

Table 1: This table provides a list of all the datasets used in the
evaluation, their sizes (#), and the sampled projections for each
dataset. For parametrics DRs, such as UMAP or t-SNE, multiple
projections of the same type were sometimes sampled from one
dataset. The algorithms used were PCA (P), t-SNE (T), UMAP (U),
Isomap(I), Spectral Embedding, Random Gaussian Projection,
and LLE (all falling under the “Other” O category).

dataset # O P T U I

cereal 58 ✓ ✓ ✓
grid6-4d 59 ✓ ✓ ✓
hiv 61 ✓ ✓ ✓
italianwines 76 ✓ ✓ ✓
n100-d10-c5-spr0.2-out0 79 ✓ ✓ ✓
n100-d5-c3-spr0.1-out0 79 ✓ ✓ ✓
n100-d5-c3-spr0.2-out0 80 ✓ ✓ ✓
n100-d5-c5-spr0.2-out0 80 ✓ ✓ ✓
grid10-3d 80 ✓ ✓ ✓
n100-d5-c5-spr0.1-out0 80 ✓ ✓ ✓
n100-d10-c3-spr0.2-out0 80 ✓ ✓ ✓
n100-d10-c3-spr0.1-out0 80 ✓ ✓ ✓
n100-d10-c5-spr0.1-out0 80 ✓ ✓ ✓
fisheries-clusteredbyescapementtarget 93 ✓
fisheries-clusteredbyharvestrule 94 ✓
swanson 101 ✓ ✓ ✓
musicnetgroups 104 ✓ ✓ ✓
world-11d 114 ✓ ✓ ✓
iris 114 ✓ ✓ ✓
world-9d 117 ✓ ✓ ✓
boston 123 ✓ ✓ ✓
wine 141 ✓ ✓ ✓
worldmap 142 ✓ ✓ ✓
ms-interleaved-40 145 ✓ ✓ ✓
parkinsons-abs-croped 151 ✓ ✓
bbdm13 159 ✓ ✓ ✓
tse300 194 ✓ ✓ ✓
mnis 200 ✓
ms-interleaved-60 231 ✓ ✓ ✓
ecoliproteins 263 ✓ ✓
ionosphere 281 ✓
javiergenerateddata-3dinterleaved-4 312 ✓ ✓ ✓
unevendensity 339 ✓ ✓ ✓
breast 350 ✓ ✓ ✓
n500-d10-c3-spr0.1-out0 383 ✓ ✓ ✓
n500-d5-c5-spr0.1-out0 395 ✓ ✓ ✓
ms-interleaved-120 395 ✓ ✓ ✓
n500-d10-c5-spr0.1-out0 395
n500-d10-c3-spr0.2-out0 399 ✓ ✓
javiergenerateddata-3dinterleaved-5 399 ✓ ✓ ✓
n500-d5-c3-spr0.2-out0 399 ✓ ✓
paintings 400 ✓ ✓
n500-d5-c3-spr0.1-out0 401 ✓ ✓ ✓
n500-d10-c5-spr0.2-out0 401 ✓ ✓ ✓
n500-d5-c5-spr0.2-out0 403
interleaved-100-200 428 ✓ ✓ ✓
olive 446 ✓ ✓ ✓
wdbc-class-1 449 ✓ ✓ ✓
javiergenerateddata-3dinterleaved-3 480 ✓ ✓ ✓
oxford-buildings-oxford 554 ✓ ✓ ✓ ✓
interleaved-100-500 678 ✓ ✓ ✓
twosquare 771 ✓ ✓ ✓
coil-100 792 ✓ ✓
interleaved-250-500 871 ✓ ✓ ✓
flowers 880 ✓ ✓ ✓ ✓ ✓
efashion 967 ✓ ✓
yeast 1162
ms-interleaved-400 1432 ✓ ✓ ✓
spambase 1657 ✓ ✓
paris-buildings 1738 ✓ ✓ ✓ ✓ ✓

G LIMITATIONS FOR SCATTERPLOTS WITH
EXTREME OUTLIERS

Figure 8 - 11 show examples of scatterplots with extreme outliers.
These types of scatterplots cannot be well handled by the cur-
rent version of HAGRID as the grid is not adaptive to the extreme
differences in point densities at the moment.
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Dataset #Proj NP CC SI ED Runtime/ms
bigger better ▶

0 0.2 0.4 0.6 0.8 1

bigger better ▶
-1 -0.5 0 0.5 1

closer to 1 better

2-1 20 21 22
◀ smaller better

0 0.2 0.4 0.6 0.8 1

◀ smaller better

10-2 100 102 104

cereal 58 ◀ ◀ ◀ ◀ ◀

grid6 59 ◀ ◀ ◀ ◀ ◀

hiv 61 ◀ ◀ ◀ ◀ ◀

musicnetgroups 66 ◀ ◀ ◀ ◀ ◀

italianwines 76 ◀ ◀ ◀ ◀ ◀

n100-d10-c5-sp... 79 ◀ ◀ ◀ ◀ ◀

n100-d5-c3-spr... 79 ◀ ◀ ◀ ◀ ◀

grid10 80 ◀ ◀ ◀ ◀ ◀

n100-d10-c5-sp... 80 ◀ ◀ ◀ ◀ ◀

n100-d5-c3-spr... 80 ◀ ◀ ◀ ◀ ◀

n100-d5-c5-spr... 80 ◀ ◀ ◀ ◀ ◀

n100-d10-c3-sp... 80 ◀ ◀ ◀ ◀ ◀

n100-d5-c5-spr... 80 ◀ ◀ ◀ ◀ ◀

n100-d10-c3-sp... 80 ◀ ◀ ◀ ◀ ◀

fisheries 93 ◀ ◀ ◀ ◀ ◀

0 0.2 0.4 0.6 0.8 1 -1 -0.5 0 0.5 1 2-1 20 21 22 0 0.2 0.4 0.6 0.8 1 10-2 100 102 104

All ◀ ◀ ◀ ◀ ◀

◀ HagridHC ◀ HagridGC ◀ DGrid ◀ CMDS ◀ SMWG

Figure 4: Results of quantitative evaluation by dataset, instead of by dataset size. The boxplots in this figure — and in the next two
figures — show the median, the 25% and 75% quantiles, while the ends show the 5- and the 95 percentile of the respective data. The
color of the triangles shows the respective best method, measured by the median of the particular metric. The results show that, apart
from the NP metric, HAGRID performs better than the other techniques. Also the runtime (log10-scale) of HAGRID is better than of any
other technique. The runtimes for CMDS are roughly 100 times higher, and for SMWG roughly 10.000 times higher.
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Dataset #Proj NP CC SI ED Runtime/ms
bigger better ▶

0 0.2 0.4 0.6 0.8 1

bigger better ▶
-1 -0.5 0 0.5 1

closer to 1 better

2-1 20 21 22
◀ smaller better

0 0.2 0.4 0.6 0.8 1

◀ smaller better

10-2 100 102 104

swanson 101 ◀ ◀ ◀ ◀ ◀

musicnetgroups 104 ◀ ◀ ◀ ◀ ◀

iris 114 ◀ ◀ ◀ ◀ ◀

world 114 ◀ ◀ ◀ ◀ ◀

boston 123 ◀ ◀ ◀ ◀ ◀

wine 141 ◀ ◀ ◀ ◀ ◀

worldmap 142 ◀ ◀ ◀ ◀ ◀

ms 144 ◀ ◀ ◀ ◀ ◀

grid6 144 ◀ ◀ ◀ ◀ ◀

parkinsons 151 ◀ ◀ ◀ ◀ ◀

bbdm13 159 ◀ ◀ ◀ ◀ ◀

tse300 194 ◀ ◀ ◀ ◀ ◀

mnistTSNE 200 ◀ ◀ ◀ ◀ ◀

0 0.2 0.4 0.6 0.8 1 -1 -0.5 0 0.5 1 2-1 20 21 22 0 0.2 0.4 0.6 0.8 1 10-2 100 102 104

All ◀ ◀ ◀ ◀ ◀

◀ HagridHC ◀ HagridGC ◀ DGrid ◀ CMDS

Figure 5: CMDS outperforms the other techniques in the NP metric, once in the CC metric, and once in SI, but needs at least
10 seconds. Else, HAGRID outperforms the other techniques.
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Dataset #Proj NP CC SI ED Runtime/ms
bigger better ▶

0 0.2 0.4 0.6 0.8 1

bigger better ▶
-1 -0.5 0 0.5 1

closer to 1 better

2-1 20 21 22
◀ smaller better

0 0.2 0.4 0.6 0.8 1

◀ smaller better

10-2 100 102 104

ms 255 ◀ ◀ ◀ ◀ ◀

ecoliproteins 263 ◀ ◀ ◀ ◀ ◀

ionosphere 273 ◀ ◀ ◀ ◀ ◀

mnistTSNE 300 ◀ ◀ ◀ ◀ ◀

twosquare 306 ◀ ◀ ◀ ◀ ◀

JavierGenerate... 312 ◀ ◀ ◀ ◀ ◀

UnEvenDensity 339 ◀ ◀ ◀ ◀ ◀

flowers 344 ◀ ◀ ◀ ◀ ◀

coil-100 344 ◀ ◀ ◀ ◀ ◀

breast 350 ◀ ◀ ◀ ◀ ◀

n500-d10-c3-sp... 383 ◀ ◀ ◀ ◀ ◀

n500-d10-c5-sp... 395 ◀ ◀ ◀ ◀ ◀

n500-d5-c5-spr... 395 ◀ ◀ ◀ ◀ ◀

n500-d10-c3-sp... 399 ◀ ◀ ◀ ◀ ◀

n500-d5-c3-spr... 399 ◀ ◀ ◀ ◀ ◀

n500-d5-c3-spr... 400 ◀ ◀ ◀ ◀ ◀

paintings 400 ◀ ◀ ◀ ◀ ◀

n500-d5-c5-spr... 400 ◀ ◀ ◀ ◀ ◀

n500-d10-c5-sp... 401 ◀ ◀ ◀ ◀ ◀

interleaved 428 ◀ ◀ ◀ ◀ ◀

olive 446 ◀ ◀ ◀ ◀ ◀

wdbc 449 ◀ ◀ ◀ ◀ ◀

swanson 501 ◀ ◀ ◀ ◀ ◀

oxford 554 ◀ ◀ ◀ ◀ ◀

PCA 554 ◀ ◀ ◀ ◀ ◀

cinic10 792 ◀ ◀ ◀ ◀ ◀

grid10 799 ◀ ◀ ◀ ◀ ◀

efashion 967 ◀ ◀ ◀ ◀ ◀

grid6 1033 ◀ ◀ ◀ ◀ ◀

yeast 1162 ◀ ◀ ◀ ◀ ◀

dogs 1500 ◀ ◀ ◀ ◀ ◀

spambase 1657 ◀ ◀ ◀ ◀ ◀

paris 1738 ◀ ◀ ◀ ◀ ◀

0 0.2 0.4 0.6 0.8 1 -1 -0.5 0 0.5 1 2-1 20 21 22 0 0.2 0.4 0.6 0.8 1 10-2 100 102 104

All ◀ ◀ ◀ ◀ ◀

◀ HagridHC ◀ HagridGC ◀ DGrid

Figure 6: Results of datasets of size 250 up to 2000.HAGRID performs in all metrics better than DGRID with 4 exceptions, where DGRID

performs better in the NP metric.
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(a) Image of Art UK Paintings dataset not aligned on a grid. (b) Image of Art UK Paintings dataset gridified with HAGRIDGC
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GRP () HagridHC HagridGC DGrid

ISM (n10) HagridHC HagridGC DGrid
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Figure 8: Scatterplots of projections of the biggest dataset, used in our evaluation (paris buildings. The points in the gridified version
are color-coded by the NP metric. Both HAGRIDHC and HAGRIDGC are sensitive to outliers, often produced by projections of SE and
LLE. DGRID is less sensitive to those outliers.
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LLE (n2) HagridHC HagridGC DGrid

SE (n10) HagridHC HagridGC DGrid

SE (n15) HagridHC HagridGC DGrid

SE (n2) HagridHC HagridGC DGrid

SE (n3) HagridHC HagridGC DGrid

SE (n5) HagridHC HagridGC DGrid
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Figure 9: Figure 8 continued (1).
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SE (n7) HagridHC HagridGC DGrid

TSNE (p10) HagridHC HagridGC DGrid

TSNE (p100) HagridHC HagridGC DGrid
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TSNE (p30) HagridHC HagridGC DGrid

TSNE (p5) HagridHC HagridGC DGrid
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Figure 10: Figure 8 continued (2).
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TSNE (p50) HagridHC HagridGC DGrid

UMAP (n2 & d0.05) HagridHC HagridGC DGrid

UMAP (n2 & d0.8) HagridHC HagridGC DGrid

UMAP (n5 & d0.25) HagridHC HagridGC DGrid

UMAP (n7 & d0.1) HagridHC HagridGC DGrid
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Figure 11: Scatterplots of projections of the biggest dataset, Figure 8 continued (3).
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